from detectfaces import fer from models.PosterV2_7cls import pyramid_trans_expr2 import os import torch from main import RecorderMeter1, RecorderMeter # noqa: F401 script_dir = os.path.dirname(os.path.abspath(__file__)) # Construct the full path to the model file model_path = os.path.join(script_dir,"models","checkpoints","raf-db-model_best.pth") # Determine the available device for model execution if torch.backends.mps.is_available(): device = "mps" elif torch.cuda.is_available(): device = "cuda" else: device = "cpu" # Initialize the model with specified image size and number of classes model = pyramid_trans_expr2(img_size=224, num_classes=7) # Wrap the model with DataParallel for potential multi-GPU usage model = torch.nn.DataParallel(model) # Move the model to the chosen device model = model.to(device) def main(): fer(model_path=model_path, device=device, model=model) if __name__ == "__main__": main()