|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
from PIL import Image |
|
from torchvision.transforms.functional import InterpolationMode |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
from internvl2_patches import InternVLChatModel |
|
|
|
import config |
|
|
|
|
|
|
|
path = config.path |
|
model = InternVLChatModel.from_pretrained( |
|
path, |
|
torch_dtype=config.dtype, |
|
|
|
use_flash_attn=True, |
|
ignore_mismatched_sizes=True, |
|
revision='7f49802f5bf1e6e3d20b6f69268701c7eb67e037').to(config.device) |
|
tokenizer = AutoTokenizer.from_pretrained('OpenGVLab/InternVL2-4B', trust_remote_code=True, use_fast=False, |
|
revision='7f49802f5bf1e6e3d20b6f69268701c7eb67e037') |
|
tokenizer.padding_side = 'left' |
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids('<IMG_CONTEXT>') |
|
model.img_context_token_id = img_context_token_id |
|
|
|
model.mlp1 = model.mlp1.to(torch.float32) |
|
|
|
print(model.mlp1,) |
|
|
|
params = list(model.mlp1.parameters()) |
|
|
|
print(f'Training: {params}') |
|
|
|
optimizer = torch.optim.AdamW(params, lr=config.lr) |
|
|
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD) |
|
]) |
|
return transform |
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
|
|
def load_image(image_file, pil_image=None, input_size=224, max_num=12): |
|
if not pil_image: |
|
pil_image = Image.open(image_file) |
|
image = pil_image.convert('RGB') |
|
transform = build_transform(input_size=input_size) |
|
|
|
pixel_values = [transform(image) for image in [image]] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values |
|
|