Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,178 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
|
54 |
-
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
|
58 |
-
|
|
|
59 |
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
|
93 |
#### Training Hyperparameters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
|
113 |
-
|
114 |
|
115 |
-
#### Factors
|
116 |
|
117 |
-
|
118 |
|
119 |
-
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
####
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
-
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
|
175 |
**BibTeX:**
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
datasets:
|
4 |
+
- s-nlp/EverGreen-Multilingual
|
5 |
+
language:
|
6 |
+
- ru
|
7 |
+
- en
|
8 |
+
- fr
|
9 |
+
- de
|
10 |
+
- he
|
11 |
+
- ar
|
12 |
+
- zh
|
13 |
+
base_model:
|
14 |
+
- intfloat/multilingual-e5-large-instruct
|
15 |
+
pipeline_tag: text-classification
|
16 |
---
|
17 |
+
# E5-EG-large
|
18 |
|
19 |
+
A lightweight multilingual model for temporal classification of questions, fine-tuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct).
|
|
|
|
|
|
|
|
|
20 |
|
21 |
## Model Details
|
22 |
|
23 |
### Model Description
|
24 |
|
25 |
+
E5-EG-small (E5 EverGreen - Large) is an efficient multilingual text classification model that determines whether questions have temporally mutable or immutable answers. This model offers a balanced trade-off between performance and computational efficiency.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
- **Model type:** Text Classification
|
28 |
+
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-large-instruct)
|
29 |
+
- **Language(s):** Russian, English, French, German, Hebrew, Arabic, Chinese
|
30 |
+
- **License:** MIT
|
31 |
|
32 |
+
### Model Sources
|
33 |
|
34 |
+
- **Repository:** [GitHub](https://github.com/s-nlp/Evergreen-classification)
|
35 |
+
- **Paper:** [Will It Still Be True Tomorrow? Multilingual Evergreen Question Classification to Improve Trustworthy QA](https://arxiv.org/abs/2505.21115)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
## How to Get Started with the Model
|
39 |
|
40 |
+
```python
|
41 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
42 |
+
import torch
|
43 |
+
import time
|
44 |
+
|
45 |
+
# Load model and tokenizer
|
46 |
+
model_name = "s-nlp/E5-EG-small"
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
49 |
+
|
50 |
+
# For optimal performance, use GPU if available
|
51 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
52 |
+
model = model.to(device)
|
53 |
+
model.eval()
|
54 |
+
|
55 |
+
# Batch classification example
|
56 |
+
questions = [
|
57 |
+
"What is the capital of France?",
|
58 |
+
"Who won the latest World Cup?",
|
59 |
+
"What is the speed of light?",
|
60 |
+
"What is the current Bitcoin price?"
|
61 |
+
]
|
62 |
+
|
63 |
+
# Tokenize all questions
|
64 |
+
inputs = tokenizer(
|
65 |
+
questions,
|
66 |
+
return_tensors="pt",
|
67 |
+
padding=True,
|
68 |
+
truncation=True,
|
69 |
+
max_length=64
|
70 |
+
).to(device)
|
71 |
+
|
72 |
+
# Classify
|
73 |
+
start_time = time.time()
|
74 |
+
with torch.no_grad():
|
75 |
+
outputs = model(**inputs)
|
76 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
77 |
+
predicted_classes = torch.argmax(predictions, dim=-1)
|
78 |
+
|
79 |
+
inference_time = (time.time() - start_time) * 1000 # ms
|
80 |
+
|
81 |
+
# Display results
|
82 |
+
class_names = ["Immutable", "Mutable"]
|
83 |
+
for i, question in enumerate(questions):
|
84 |
+
print(f"Q: {question}")
|
85 |
+
print(f" Classification: {class_names[predicted_classes[i].item()]}")
|
86 |
+
print(f" Confidence: {predictions[i][predicted_classes[i]].item():.2f}")
|
87 |
+
|
88 |
+
print(f"\nTotal inference time: {inference_time:.2f}ms")
|
89 |
+
print(f"Average per question: {inference_time/len(questions):.2f}ms")
|
90 |
+
```
|
91 |
|
92 |
## Training Details
|
93 |
|
94 |
### Training Data
|
95 |
|
96 |
+
Same multilingual dataset as E5-EG-small:
|
97 |
+
- ~4,000 questions per language
|
98 |
+
- Balanced class distribution
|
99 |
+
- Augmented with synthetic and translated data
|
100 |
|
101 |
### Training Procedure
|
102 |
|
103 |
+
#### Preprocessing
|
104 |
+
- Identical to E5-EG-small
|
105 |
+
- Maximum sequence length: 64 tokens
|
106 |
+
- Multilingual tokenization
|
|
|
|
|
107 |
|
108 |
#### Training Hyperparameters
|
109 |
+
- **Training regime:** fp16 mixed precision
|
110 |
+
- **Epochs:** 10
|
111 |
+
- **Batch size:** 32
|
112 |
+
- **Learning rate:** 5e-05
|
113 |
+
- **Warmup steps:** 300
|
114 |
+
- **Weight decay:** 0.01
|
115 |
+
- **Optimizer:** AdamW
|
116 |
+
- **Loss function:** Focal Loss (γ=2.0, α=0.25) with class weighting
|
117 |
+
- **Gradient accumulation steps:** 1
|
118 |
|
119 |
+
#### Hardware
|
120 |
+
- **GPUs:** Single NVIDIA V100
|
121 |
+
- **Training time:** ~8 hours
|
|
|
|
|
|
|
|
|
122 |
|
123 |
## Evaluation
|
124 |
|
125 |
+
### Testing Data
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
Same test sets as E5-EG-large (2100 samples per language).
|
128 |
|
|
|
129 |
|
130 |
+
### Metrics
|
131 |
|
132 |
+
#### Overall Performance
|
133 |
+
| Metric | Score |
|
134 |
+
|--------|-------|
|
135 |
+
| Overall F1 | 0.89 |
|
136 |
+
| Overall Accuracy | 0.88 |
|
137 |
|
138 |
+
#### Per-Language F1 Scores
|
139 |
+
| Language | F1 Score |
|
140 |
+
|----------|----------|
|
141 |
+
| English | 0.92 |
|
142 |
+
| Chinese | 0.91 |
|
143 |
+
| French | 0.90 |
|
144 |
+
| German | 0.89 |
|
145 |
+
| Russian | 0.88 |
|
146 |
+
| Hebrew | 0.87 |
|
147 |
+
| Arabic | 0.86 |
|
148 |
|
149 |
+
#### Class-wise Performance
|
150 |
+
| Class | Precision | Recall | F1 |
|
151 |
+
|-------|-----------|--------|-----|
|
152 |
+
| Immutable | 0.87 | 0.90 | 0.88 |
|
153 |
+
| Mutable | 0.90 | 0.87 | 0.88 |
|
154 |
|
155 |
+
### Model Comparison
|
156 |
|
157 |
+
| Model | Parameters | Overall F1 | Inference Time (ms) |
|
158 |
+
|-------|------------|------------|---------------------|
|
159 |
+
| E5-EG-large | 560M | 0.89 | 45 |
|
160 |
+
| E5-EG-small | 118M | 0.85 | 12 |
|
161 |
+
| mDeBERTa-base | 278M | 0.87 | 28 |
|
162 |
+
| mBERT | 177M | 0.85 | 20 |
|
163 |
|
164 |
+
## Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
**BibTeX:**
|
167 |
|
168 |
+
```bibtex
|
169 |
+
@misc{pletenev2025truetomorrowmultilingualevergreen,
|
170 |
+
title={Will It Still Be True Tomorrow? Multilingual Evergreen Question Classification to Improve Trustworthy QA},
|
171 |
+
author={Sergey Pletenev and Maria Marina and Nikolay Ivanov and Daria Galimzianova and Nikita Krayko and Mikhail Salnikov and Vasily Konovalov and Alexander Panchenko and Viktor Moskvoretskii},
|
172 |
+
year={2025},
|
173 |
+
eprint={2505.21115},
|
174 |
+
archivePrefix={arXiv},
|
175 |
+
primaryClass={cs.CL},
|
176 |
+
url={https://arxiv.org/abs/2505.21115},
|
177 |
+
}
|
178 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|