Text Classification
Transformers
Safetensors
xlm-roberta
memyprokotow commited on
Commit
2b05e54
·
verified ·
1 Parent(s): 0344b03

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +136 -157
README.md CHANGED
@@ -1,199 +1,178 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
 
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
  #### Training Hyperparameters
 
 
 
 
 
 
 
 
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
 
 
 
 
120
 
121
- #### Metrics
 
 
 
 
 
 
 
 
 
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
 
 
124
 
125
- [More Information Needed]
126
 
127
- ### Results
 
 
 
 
 
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - s-nlp/EverGreen-Multilingual
5
+ language:
6
+ - ru
7
+ - en
8
+ - fr
9
+ - de
10
+ - he
11
+ - ar
12
+ - zh
13
+ base_model:
14
+ - intfloat/multilingual-e5-large-instruct
15
+ pipeline_tag: text-classification
16
  ---
17
+ # E5-EG-large
18
 
19
+ A lightweight multilingual model for temporal classification of questions, fine-tuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct).
 
 
 
 
20
 
21
  ## Model Details
22
 
23
  ### Model Description
24
 
25
+ E5-EG-small (E5 EverGreen - Large) is an efficient multilingual text classification model that determines whether questions have temporally mutable or immutable answers. This model offers a balanced trade-off between performance and computational efficiency.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
+ - **Model type:** Text Classification
28
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-large-instruct)
29
+ - **Language(s):** Russian, English, French, German, Hebrew, Arabic, Chinese
30
+ - **License:** MIT
31
 
32
+ ### Model Sources
33
 
34
+ - **Repository:** [GitHub](https://github.com/s-nlp/Evergreen-classification)
35
+ - **Paper:** [Will It Still Be True Tomorrow? Multilingual Evergreen Question Classification to Improve Trustworthy QA](https://arxiv.org/abs/2505.21115)
36
 
 
 
 
 
 
 
 
 
 
37
 
38
  ## How to Get Started with the Model
39
 
40
+ ```python
41
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
42
+ import torch
43
+ import time
44
+
45
+ # Load model and tokenizer
46
+ model_name = "s-nlp/E5-EG-small"
47
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
48
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
49
+
50
+ # For optimal performance, use GPU if available
51
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
52
+ model = model.to(device)
53
+ model.eval()
54
+
55
+ # Batch classification example
56
+ questions = [
57
+ "What is the capital of France?",
58
+ "Who won the latest World Cup?",
59
+ "What is the speed of light?",
60
+ "What is the current Bitcoin price?"
61
+ ]
62
+
63
+ # Tokenize all questions
64
+ inputs = tokenizer(
65
+ questions,
66
+ return_tensors="pt",
67
+ padding=True,
68
+ truncation=True,
69
+ max_length=64
70
+ ).to(device)
71
+
72
+ # Classify
73
+ start_time = time.time()
74
+ with torch.no_grad():
75
+ outputs = model(**inputs)
76
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
77
+ predicted_classes = torch.argmax(predictions, dim=-1)
78
+
79
+ inference_time = (time.time() - start_time) * 1000 # ms
80
+
81
+ # Display results
82
+ class_names = ["Immutable", "Mutable"]
83
+ for i, question in enumerate(questions):
84
+ print(f"Q: {question}")
85
+ print(f" Classification: {class_names[predicted_classes[i].item()]}")
86
+ print(f" Confidence: {predictions[i][predicted_classes[i]].item():.2f}")
87
+
88
+ print(f"\nTotal inference time: {inference_time:.2f}ms")
89
+ print(f"Average per question: {inference_time/len(questions):.2f}ms")
90
+ ```
91
 
92
  ## Training Details
93
 
94
  ### Training Data
95
 
96
+ Same multilingual dataset as E5-EG-small:
97
+ - ~4,000 questions per language
98
+ - Balanced class distribution
99
+ - Augmented with synthetic and translated data
100
 
101
  ### Training Procedure
102
 
103
+ #### Preprocessing
104
+ - Identical to E5-EG-small
105
+ - Maximum sequence length: 64 tokens
106
+ - Multilingual tokenization
 
 
107
 
108
  #### Training Hyperparameters
109
+ - **Training regime:** fp16 mixed precision
110
+ - **Epochs:** 10
111
+ - **Batch size:** 32
112
+ - **Learning rate:** 5e-05
113
+ - **Warmup steps:** 300
114
+ - **Weight decay:** 0.01
115
+ - **Optimizer:** AdamW
116
+ - **Loss function:** Focal Loss (γ=2.0, α=0.25) with class weighting
117
+ - **Gradient accumulation steps:** 1
118
 
119
+ #### Hardware
120
+ - **GPUs:** Single NVIDIA V100
121
+ - **Training time:** ~8 hours
 
 
 
 
122
 
123
  ## Evaluation
124
 
125
+ ### Testing Data
 
 
 
 
 
 
126
 
127
+ Same test sets as E5-EG-large (2100 samples per language).
128
 
 
129
 
130
+ ### Metrics
131
 
132
+ #### Overall Performance
133
+ | Metric | Score |
134
+ |--------|-------|
135
+ | Overall F1 | 0.89 |
136
+ | Overall Accuracy | 0.88 |
137
 
138
+ #### Per-Language F1 Scores
139
+ | Language | F1 Score |
140
+ |----------|----------|
141
+ | English | 0.92 |
142
+ | Chinese | 0.91 |
143
+ | French | 0.90 |
144
+ | German | 0.89 |
145
+ | Russian | 0.88 |
146
+ | Hebrew | 0.87 |
147
+ | Arabic | 0.86 |
148
 
149
+ #### Class-wise Performance
150
+ | Class | Precision | Recall | F1 |
151
+ |-------|-----------|--------|-----|
152
+ | Immutable | 0.87 | 0.90 | 0.88 |
153
+ | Mutable | 0.90 | 0.87 | 0.88 |
154
 
155
+ ### Model Comparison
156
 
157
+ | Model | Parameters | Overall F1 | Inference Time (ms) |
158
+ |-------|------------|------------|---------------------|
159
+ | E5-EG-large | 560M | 0.89 | 45 |
160
+ | E5-EG-small | 118M | 0.85 | 12 |
161
+ | mDeBERTa-base | 278M | 0.87 | 28 |
162
+ | mBERT | 177M | 0.85 | 20 |
163
 
164
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165
 
166
  **BibTeX:**
167
 
168
+ ```bibtex
169
+ @misc{pletenev2025truetomorrowmultilingualevergreen,
170
+ title={Will It Still Be True Tomorrow? Multilingual Evergreen Question Classification to Improve Trustworthy QA},
171
+ author={Sergey Pletenev and Maria Marina and Nikolay Ivanov and Daria Galimzianova and Nikita Krayko and Mikhail Salnikov and Vasily Konovalov and Alexander Panchenko and Viktor Moskvoretskii},
172
+ year={2025},
173
+ eprint={2505.21115},
174
+ archivePrefix={arXiv},
175
+ primaryClass={cs.CL},
176
+ url={https://arxiv.org/abs/2505.21115},
177
+ }
178
+ ```