Add SVD-compressed model with rank 512
Browse files- config.json +79 -0
- configuration_bart.py +11 -0
- modeling_bart.py +45 -0
- modules.py +121 -0
- pytorch_model.bin +3 -0
- util.py +227 -0
config.json
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/bart-base",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"add_bias_logits": false,
|
6 |
+
"add_final_layer_norm": false,
|
7 |
+
"architectures": [
|
8 |
+
"SVDCompressedBartForConditionGeneration"
|
9 |
+
],
|
10 |
+
"attention_dropout": 0.1,
|
11 |
+
"auto_map": {
|
12 |
+
"AutoConfig": "configuration_bart.SVDCompressedBartConfig",
|
13 |
+
"AutoModelForSeq2SeqLM": "modeling_bart.SVDCompressedBartForConditionGeneration"
|
14 |
+
},
|
15 |
+
"bos_token_id": 0,
|
16 |
+
"classif_dropout": 0.1,
|
17 |
+
"classifier_dropout": 0.0,
|
18 |
+
"d_model": 768,
|
19 |
+
"decoder_attention_heads": 12,
|
20 |
+
"decoder_ffn_dim": 3072,
|
21 |
+
"decoder_layerdrop": 0.0,
|
22 |
+
"decoder_layers": 6,
|
23 |
+
"decoder_start_token_id": 2,
|
24 |
+
"dropout": 0.1,
|
25 |
+
"early_stopping": true,
|
26 |
+
"encoder_attention_heads": 12,
|
27 |
+
"encoder_ffn_dim": 3072,
|
28 |
+
"encoder_layerdrop": 0.0,
|
29 |
+
"encoder_layers": 6,
|
30 |
+
"eos_token_id": 2,
|
31 |
+
"forced_eos_token_id": 2,
|
32 |
+
"gradient_checkpointing": false,
|
33 |
+
"id2label": {
|
34 |
+
"0": "LABEL_0",
|
35 |
+
"1": "LABEL_1",
|
36 |
+
"2": "LABEL_2"
|
37 |
+
},
|
38 |
+
"init_std": 0.02,
|
39 |
+
"is_encoder_decoder": true,
|
40 |
+
"label2id": {
|
41 |
+
"LABEL_0": 0,
|
42 |
+
"LABEL_1": 1,
|
43 |
+
"LABEL_2": 2
|
44 |
+
},
|
45 |
+
"max_position_embeddings": 1024,
|
46 |
+
"model_type": "bart",
|
47 |
+
"no_repeat_ngram_size": 3,
|
48 |
+
"normalize_before": false,
|
49 |
+
"normalize_embedding": true,
|
50 |
+
"num_beams": 4,
|
51 |
+
"num_hidden_layers": 6,
|
52 |
+
"pad_token_id": 1,
|
53 |
+
"rank": 512,
|
54 |
+
"scale_embedding": false,
|
55 |
+
"task_specific_params": {
|
56 |
+
"summarization": {
|
57 |
+
"length_penalty": 1.0,
|
58 |
+
"max_length": 128,
|
59 |
+
"min_length": 12,
|
60 |
+
"num_beams": 4
|
61 |
+
},
|
62 |
+
"summarization_cnn": {
|
63 |
+
"length_penalty": 2.0,
|
64 |
+
"max_length": 142,
|
65 |
+
"min_length": 56,
|
66 |
+
"num_beams": 4
|
67 |
+
},
|
68 |
+
"summarization_xsum": {
|
69 |
+
"length_penalty": 1.0,
|
70 |
+
"max_length": 62,
|
71 |
+
"min_length": 11,
|
72 |
+
"num_beams": 6
|
73 |
+
}
|
74 |
+
},
|
75 |
+
"torch_dtype": "float32",
|
76 |
+
"transformers_version": "4.25.1",
|
77 |
+
"use_cache": true,
|
78 |
+
"vocab_size": 50266
|
79 |
+
}
|
configuration_bart.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BartConfig
|
2 |
+
|
3 |
+
|
4 |
+
class SVDCompressedBartConfig(BartConfig):
|
5 |
+
|
6 |
+
def __init__(self, *args, rank: int = 512, **kwargs):
|
7 |
+
super().__init__(*args, **kwargs)
|
8 |
+
self.rank = rank
|
9 |
+
|
10 |
+
|
11 |
+
SVDCompressedBartConfig.register_for_auto_class()
|
modeling_bart.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This module uses parts of rut5compressed. It shares the same module
|
2 |
+
structure as model used in neural network compression experiments with
|
3 |
+
rut5compressed.
|
4 |
+
"""
|
5 |
+
|
6 |
+
from functools import partial
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
import torch as T
|
10 |
+
from transformers import BartForConditionalGeneration
|
11 |
+
|
12 |
+
from .configuration_bart import SVDCompressedBartConfig
|
13 |
+
from .modules import SVDCompressedLinear
|
14 |
+
from .util import compress_linear_svd, map_module
|
15 |
+
|
16 |
+
|
17 |
+
class SVDCompressedBartForConditionGeneration(BartForConditionalGeneration):
|
18 |
+
"""Class SVDCompressedBartForConditionGeneration defines a BART-based model
|
19 |
+
with compressed linear layers with SVD.
|
20 |
+
"""
|
21 |
+
|
22 |
+
LAYERS = r'/(de|en)coder/layers/\d+/fc[12]'
|
23 |
+
|
24 |
+
config_class = SVDCompressedBartConfig
|
25 |
+
|
26 |
+
def __init__(self, config: SVDCompressedBartConfig,
|
27 |
+
rank: Optional[int] = None,
|
28 |
+
compress: bool = False):
|
29 |
+
super().__init__(config)
|
30 |
+
self.rank = rank or config.rank
|
31 |
+
|
32 |
+
compress_fn = partial(compress_linear_svd, rank=self.rank)
|
33 |
+
if not compress:
|
34 |
+
compress_fn = self.convert
|
35 |
+
self.model = map_module(self.model, compress_fn, self.LAYERS)
|
36 |
+
|
37 |
+
def convert(self, module: T.nn.Module, path: str) -> T.nn.Module:
|
38 |
+
if not isinstance(module, T.nn.Linear):
|
39 |
+
return module
|
40 |
+
return SVDCompressedLinear.from_random(module.in_features,
|
41 |
+
module.out_features, self.rank)
|
42 |
+
|
43 |
+
|
44 |
+
SVDCompressedBartForConditionGeneration \
|
45 |
+
.register_for_auto_class('AutoModelForSeq2SeqLM')
|
modules.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copied from
|
2 |
+
# rut5compressed/nn/functional.py
|
3 |
+
# rut5compressed/nn/modules.py
|
4 |
+
# modules of original repository.
|
5 |
+
|
6 |
+
from typing import Optional, Sequence, Tuple
|
7 |
+
|
8 |
+
import torch as T
|
9 |
+
|
10 |
+
|
11 |
+
class SVDCompressedLinearFunc(T.autograd.Function):
|
12 |
+
|
13 |
+
@staticmethod
|
14 |
+
def forward(ctx, input: T.Tensor, lhs: T.Tensor,
|
15 |
+
rhs: T.Tensor, bias: Optional[T.Tensor] = None) -> T.Tensor:
|
16 |
+
# See PEP-0465 on matmul operator associativity.
|
17 |
+
# https://peps.python.org/pep-0465/#precedence-and-associativity
|
18 |
+
output = (input @ lhs) @ rhs
|
19 |
+
if bias is not None:
|
20 |
+
output += bias[None, :]
|
21 |
+
ctx.bias = bias is not None
|
22 |
+
ctx.save_for_backward(input, lhs, rhs)
|
23 |
+
return output
|
24 |
+
|
25 |
+
@staticmethod
|
26 |
+
def backward(ctx, grad_output: Sequence[T.Tensor]):
|
27 |
+
input, lhs, rhs = ctx.saved_tensors
|
28 |
+
|
29 |
+
# Flatten input and output gradients over the leading dimensions.
|
30 |
+
inp_size = lhs.shape[0]
|
31 |
+
out_size = rhs.shape[1]
|
32 |
+
input_shape = input.shape
|
33 |
+
input = input.reshape(-1, inp_size)
|
34 |
+
grad_output = grad_output.reshape(-1, out_size)
|
35 |
+
|
36 |
+
input_grad = None
|
37 |
+
if ctx.needs_input_grad[0]:
|
38 |
+
input_grad = (grad_output @ rhs.T) @ lhs.T
|
39 |
+
|
40 |
+
lhs_grad = None
|
41 |
+
if ctx.needs_input_grad[1]:
|
42 |
+
# On practice for large models embedding dimension is large than
|
43 |
+
# batch size.
|
44 |
+
lhs_grad = input.T @ (grad_output @ rhs.T)
|
45 |
+
|
46 |
+
rhs_grad = None
|
47 |
+
if ctx.needs_input_grad[2]:
|
48 |
+
# Again, batch size is usually lesser then embedding dimension.
|
49 |
+
rhs_grad = (input @ lhs).T @ grad_output
|
50 |
+
|
51 |
+
bias_grad = None
|
52 |
+
if ctx.needs_input_grad[3]:
|
53 |
+
bias_grad = grad_output.sum(axis=0)
|
54 |
+
|
55 |
+
# Restore shape of input gradients.
|
56 |
+
input_grad = input_grad.reshape(input_shape)
|
57 |
+
return input_grad, lhs_grad, rhs_grad, bias_grad
|
58 |
+
|
59 |
+
|
60 |
+
compressed_linear_svd = SVDCompressedLinearFunc.apply
|
61 |
+
|
62 |
+
|
63 |
+
class SVDCompressedLinear(T.nn.Module):
|
64 |
+
"""Class SVDCompressedLinear is a layer which represents a weight matrix of
|
65 |
+
lineaer layer in factorized view.
|
66 |
+
|
67 |
+
>>> linear_layer = T.nn.Linear(10, 20)
|
68 |
+
>>> svd_layer = SVDCompressedLinear.from_linear(linear_layer, rank=5)
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __init__(self, factors: Tuple[T.Tensor, T.Tensor, T.Tensor],
|
72 |
+
bias: Optional[T.Tensor] = None):
|
73 |
+
super().__init__()
|
74 |
+
|
75 |
+
# We do not want track singular values so let's mix t into left and
|
76 |
+
# right vectors.
|
77 |
+
scale = T.sqrt(factors[1])
|
78 |
+
|
79 |
+
# Store factors of W^T but build factors for W.
|
80 |
+
self.lhs = T.nn.Parameter(factors[2].T * scale[None, :])
|
81 |
+
self.rhs = T.nn.Parameter(factors[0].T * scale[:, None])
|
82 |
+
|
83 |
+
self.bias = None
|
84 |
+
if bias is not None:
|
85 |
+
self.bias = T.nn.Parameter(bias)
|
86 |
+
|
87 |
+
self.in_features = self.lhs.shape[0]
|
88 |
+
self.out_features = self.rhs.shape[1]
|
89 |
+
|
90 |
+
@classmethod
|
91 |
+
def from_linear(cls, linear: T.nn.Linear, rank: Optional[int] = None,
|
92 |
+
tol: float = 1e-6):
|
93 |
+
with T.no_grad():
|
94 |
+
data = linear.weight.data
|
95 |
+
lhs, vals, rhs = T.linalg.svd(data)
|
96 |
+
if rank is None:
|
97 |
+
raise NotImplementedError
|
98 |
+
else:
|
99 |
+
lhs = lhs[:, :rank]
|
100 |
+
rhs = rhs[:rank, :]
|
101 |
+
vals = vals[:rank]
|
102 |
+
|
103 |
+
bias = None
|
104 |
+
if linear.bias is not None:
|
105 |
+
bias = T.clone(linear.bias.data)
|
106 |
+
|
107 |
+
return SVDCompressedLinear((lhs, vals, rhs), bias)
|
108 |
+
|
109 |
+
@classmethod
|
110 |
+
def from_random(cls, in_features: int, out_features: int, rank: int,
|
111 |
+
bias: bool = True):
|
112 |
+
lvecs = T.randn((out_features, rank))
|
113 |
+
svals = T.ones(rank)
|
114 |
+
rvecs = T.randn((rank, in_features))
|
115 |
+
bias_term = None
|
116 |
+
if bias:
|
117 |
+
bias_term = T.randn(out_features)
|
118 |
+
return SVDCompressedLinear((lvecs, svals, rvecs), bias_term)
|
119 |
+
|
120 |
+
def forward(self, input: T.Tensor) -> T.Tensor:
|
121 |
+
return compressed_linear_svd(input, self.lhs, self.rhs, self.bias)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:327dc37b94d577ccfd06fec73f9e2fd6c4ab1ed5b37b1c3917962dc81d3d84bd
|
3 |
+
size 520233469
|
util.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copied from rut5compressed/util.py of rut5compressed repository.
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import re
|
5 |
+
from functools import wraps
|
6 |
+
from re import Pattern
|
7 |
+
from typing import Callable, Dict, Optional, Tuple
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import torch as T
|
11 |
+
|
12 |
+
from .modules import SVDCompressedLinear
|
13 |
+
|
14 |
+
|
15 |
+
def map_module(root: T.nn.Module,
|
16 |
+
func: Callable[[T.nn.Module, str], T.nn.Module],
|
17 |
+
patt: Optional[str] = None) -> T.nn.Module:
|
18 |
+
"""Function ``map_module`` applies a function to each leaf of module tree
|
19 |
+
which matches to a specified pattern.
|
20 |
+
|
21 |
+
Parameters
|
22 |
+
----------
|
23 |
+
root : torch.nn.Module
|
24 |
+
Module to modify.
|
25 |
+
func : callable
|
26 |
+
Function to be applied to every module (or matched to pattern) in
|
27 |
+
module tree.
|
28 |
+
patt : str, optional
|
29 |
+
Pattern to filter modules by path in module tree.
|
30 |
+
|
31 |
+
Returns
|
32 |
+
-------
|
33 |
+
torch.nn.Module
|
34 |
+
Module modified in-place.
|
35 |
+
"""
|
36 |
+
@wraps(func)
|
37 |
+
def func_safe(*args, **kwargs):
|
38 |
+
node = func(*args, **kwargs)
|
39 |
+
if not isinstance(node, T.nn.Module):
|
40 |
+
raise ValueError('Mapped result must be toch.nn.Module type '
|
41 |
+
f'but given {type(node)}.')
|
42 |
+
return node
|
43 |
+
|
44 |
+
return _map_module(root, func_safe, re.compile(patt or r'.*'), '')
|
45 |
+
|
46 |
+
|
47 |
+
def _map_module(root: T.nn.Module,
|
48 |
+
func: Callable[[T.nn.Module, str], T.nn.Module], patt: Pattern,
|
49 |
+
path: str) -> T.nn.Module:
|
50 |
+
for name, child in root.named_children():
|
51 |
+
node = _map_module(child, func, patt, f'{path}/{name}')
|
52 |
+
if node != child:
|
53 |
+
setattr(root, name, node)
|
54 |
+
if patt.match(path or '/'):
|
55 |
+
root = func(root, path or '/')
|
56 |
+
return root
|
57 |
+
|
58 |
+
|
59 |
+
def convert_linear(module: T.nn.Linear, ctor, **kwargs) -> T.nn.Module:
|
60 |
+
"""Function convert_linear takes module and returns linear module with
|
61 |
+
approximate matmul. Non-linear modules are returned intact.
|
62 |
+
"""
|
63 |
+
if not isinstance(module, T.nn.Linear):
|
64 |
+
return module
|
65 |
+
raise NotImplementedError
|
66 |
+
|
67 |
+
|
68 |
+
def numel(module: T.nn.Module):
|
69 |
+
value = sum(x.numel() for x in module.parameters()) + \
|
70 |
+
sum(x.numel() for x in module.buffers())
|
71 |
+
|
72 |
+
def account_prunned(module: T.nn.Module, path: str):
|
73 |
+
nonlocal value
|
74 |
+
for name, attr in vars(module).items():
|
75 |
+
if not name.endswith('_mask') or not isinstance(attr, T.Tensor):
|
76 |
+
continue
|
77 |
+
|
78 |
+
weight_name = name[:-5]
|
79 |
+
if not hasattr(module, weight_name):
|
80 |
+
continue
|
81 |
+
|
82 |
+
weight = getattr(module, weight_name)
|
83 |
+
value -= weight.numel() - attr.sum()
|
84 |
+
value += attr.numel()
|
85 |
+
return module
|
86 |
+
|
87 |
+
def account_quantized(module: T.nn.Module, path: str):
|
88 |
+
nonlocal value
|
89 |
+
if isinstance(module, T.nn.quantized.Linear):
|
90 |
+
value += module.weight().numel()
|
91 |
+
if module.bias() is not None:
|
92 |
+
value += module.bias().numel()
|
93 |
+
return module
|
94 |
+
|
95 |
+
def account_rest(module: T.nn.Module, path: str):
|
96 |
+
account_prunned(module, path)
|
97 |
+
account_quantized(module, path)
|
98 |
+
return module
|
99 |
+
|
100 |
+
map_module(module, account_rest)
|
101 |
+
return value
|
102 |
+
|
103 |
+
|
104 |
+
def sizeof(module: T.nn.Module):
|
105 |
+
value = sum(x.numel() * x.element_size() for x in module.parameters()) + \
|
106 |
+
sum(x.numel() * x.element_size() for x in module.buffers())
|
107 |
+
|
108 |
+
def account_prunned(module: T.nn.Module, path: str):
|
109 |
+
nonlocal value
|
110 |
+
for name, attr in vars(module).items():
|
111 |
+
if not name.endswith('_mask') or not isinstance(attr, T.Tensor):
|
112 |
+
continue
|
113 |
+
|
114 |
+
weight_name = name[:-5]
|
115 |
+
if not hasattr(module, weight_name):
|
116 |
+
continue
|
117 |
+
|
118 |
+
weight = getattr(module, weight_name)
|
119 |
+
value -= (weight.numel() - attr.sum()) * weight.element_size()
|
120 |
+
value += attr.numel() * attr.element_size()
|
121 |
+
return module
|
122 |
+
|
123 |
+
def account_quantized(module: T.nn.Module, path: str):
|
124 |
+
nonlocal value
|
125 |
+
if isinstance(module, T.nn.quantized.Linear):
|
126 |
+
value += module.weight().numel() * module.weight().element_size()
|
127 |
+
if (bias := module.bias()) is not None:
|
128 |
+
value += bias.numel() * bias.element_size()
|
129 |
+
return module
|
130 |
+
|
131 |
+
def account_rest(module: T.nn.Module, path: str):
|
132 |
+
account_prunned(module, path)
|
133 |
+
account_quantized(module, path)
|
134 |
+
return module
|
135 |
+
|
136 |
+
map_module(module, account_rest)
|
137 |
+
return value
|
138 |
+
|
139 |
+
|
140 |
+
def flatten_module(module: T.nn.Module, regexp=None) -> Dict[str, T.nn.Module]:
|
141 |
+
modules = {}
|
142 |
+
map_module(module, lambda x, y: modules.update(**{y: x}) or x, regexp)
|
143 |
+
return modules
|
144 |
+
|
145 |
+
|
146 |
+
def print_flatten(module: T.nn.Module):
|
147 |
+
paths = []
|
148 |
+
path_len = 0
|
149 |
+
names = []
|
150 |
+
name_len = 0
|
151 |
+
indx_len = 0
|
152 |
+
|
153 |
+
def func(module, path):
|
154 |
+
nonlocal path_len, name_len, indx_len
|
155 |
+
paths.append(path)
|
156 |
+
path_len = max(path_len, len(path))
|
157 |
+
name = module.__class__.__name__
|
158 |
+
names.append(name)
|
159 |
+
name_len = max(name_len, len(name))
|
160 |
+
indx_len += 1
|
161 |
+
return module
|
162 |
+
|
163 |
+
map_module(module, func)
|
164 |
+
|
165 |
+
indx_len = int(np.ceil(np.log10(indx_len)))
|
166 |
+
fmt = f'{{indx:>{indx_len}s}} {{path:{path_len}s}} {{name:{name_len}s}}'
|
167 |
+
print(fmt.format(indx='#', path='Path', name='Layer'))
|
168 |
+
print('-' * (indx_len + path_len + name_len + 2))
|
169 |
+
for i, (path, name) in enumerate(zip(paths, names)):
|
170 |
+
print(fmt.format(indx=str(i), path=path, name=name))
|
171 |
+
|
172 |
+
|
173 |
+
def compress_linear_svd(module: T.nn.Module, path: str,
|
174 |
+
rank: Optional[int] = None) -> T.nn.Module:
|
175 |
+
if not isinstance(module, T.nn.Linear):
|
176 |
+
return module
|
177 |
+
|
178 |
+
# Do not factorize if ranks equals to the size of the
|
179 |
+
# smallest dimension.
|
180 |
+
norows, nocols = module.weight.shape
|
181 |
+
if rank == min(norows, nocols):
|
182 |
+
return module
|
183 |
+
|
184 |
+
# If there is no rank, then choose rank to be equal point when the number
|
185 |
+
# of elements in original matrix is approximately equal to the number of
|
186 |
+
# elements in SVD factors.
|
187 |
+
if rank is None:
|
188 |
+
ratio = norows * nocols / (norows + nocols)
|
189 |
+
rank = int(np.floor(ratio))
|
190 |
+
|
191 |
+
return SVDCompressedLinear.from_linear(module, rank)
|
192 |
+
|
193 |
+
|
194 |
+
def compress_linear_tt(module: T.nn.Module, path: str,
|
195 |
+
shape: Tuple[Tuple[int], Tuple[int]],
|
196 |
+
rank: int) -> T.nn.Module:
|
197 |
+
if not isinstance(module, T.nn.Linear):
|
198 |
+
return module
|
199 |
+
|
200 |
+
# TODO(@not-found): We need propper compression config.
|
201 |
+
inp_size = np.prod(shape[0])
|
202 |
+
out_size = np.prod(shape[1])
|
203 |
+
if inp_size == module.in_features and out_size == module.out_features:
|
204 |
+
pass
|
205 |
+
elif inp_size == module.out_features and out_size == module.in_features:
|
206 |
+
shape = (shape[1], shape[0])
|
207 |
+
else:
|
208 |
+
raise ValueError(
|
209 |
+
'Input and output features does not match to compression shape: '
|
210 |
+
f'{shape[0]} vs {module.in_features} and {shape[1]} vs '
|
211 |
+
f'{module.out_features}.')
|
212 |
+
|
213 |
+
logging.info('apply tt compression to layer %s', path)
|
214 |
+
return TTCompressedLinear.from_linear(module, shape, rank) # noqa: F821
|
215 |
+
|
216 |
+
|
217 |
+
def compress(module: T.nn.Module, rank: int) -> T.nn.Module:
|
218 |
+
"""Function compress substitutes in-place linear layer of T5 model with
|
219 |
+
linear layer which weight matrix is factorized with SVD.
|
220 |
+
|
221 |
+
:param module: Model to compress.
|
222 |
+
:param rank: Desired rank of compressed layer.
|
223 |
+
"""
|
224 |
+
return map_module(
|
225 |
+
root=module,
|
226 |
+
func=lambda x, y: compress_linear_svd(x, y, rank),
|
227 |
+
patt=r'.*/DenseReluDense/w.*') # TODO(@not-found): Remove?
|