--- license: openrail++ language: - ru tags: - text-generation-inference datasets: - s-nlp/ru_paradetox base_model: - ai-forever/ruT5-base --- This is the detoxification baseline model trained on the [train](https://github.com/skoltech-nlp/russe_detox_2022/blob/main/data/input/train.tsv) part of "RUSSE 2022: Russian Text Detoxification Based on Parallel Corpora" competition. The source sentences are Russian toxic messages from Odnoklassniki, Pikabu, and Twitter platforms. The base model is [ruT5](https://huggingface.co/ai-forever/ruT5-base). **How to use** ```python from transformers import T5ForConditionalGeneration, AutoTokenizer base_model_name = 'ai-forever/ruT5-base' model_name = 's-nlp/ruT5-base-detox' tokenizer = AutoTokenizer.from_pretrained(base_model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) input_ids = tokenizer.encode('Это полная хуйня!', return_tensors='pt') output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1) output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) print(output_text) # Это полный бред! ``` ## Citation ``` @article{dementievarusse, title={RUSSE-2022: Findings of the First Russian Detoxification Shared Task Based on Parallel Corpora}, author={Dementieva, Daryna and Logacheva, Varvara and Nikishina, Irina and Fenogenova, Alena and Dale, David and Krotova, Irina and Semenov, Nikita and Shavrina, Tatiana and Panchenko, Alexander} } ``` **License** This model is licensed under the OpenRAIL++ License, which supports the development of various technologies—both industrial and academic—that serve the public good.