--- language: - ru - en - fr - it - pt tags: - formal or informal classification licenses: - cc-by-nc-sa --- XLMRoberta-based classifier trained on XFORMAL and add Russian. all | | precision | recall | f1-score | support | |--------------|-----------|----------|----------|---------| | 0 | 0.744912 | 0.927790 | 0.826354 | 108019 | | 1 | 0.889088 | 0.645630 | 0.748048 | 96845 | | accuracy | | | 0.794405 | 204864 | | macro avg | 0.817000 | 0.786710 | 0.787201 | 204864 | | weighted avg | 0.813068 | 0.794405 | 0.789337 | 204864 | en | | precision | recall | f1-score | support | |--------------|-----------|----------|----------|---------| | 0 | 0.800053 | 0.962981 | 0.873988 | 22151 | | 1 | 0.945106 | 0.725899 | 0.821124 | 19449 | | accuracy | | | 0.852139 | 41600 | | macro avg | 0.872579 | 0.844440 | 0.847556 | 41600 | | weighted avg | 0.867869 | 0.852139 | 0.849273 | 41600 | fr | | precision | recall | f1-score | support | |--------------|-----------|----------|----------|---------| | 0 | 0.746709 | 0.925738 | 0.826641 | 21505 | | 1 | 0.887305 | 0.650592 | 0.750731 | 19327 | | accuracy | | | 0.795504 | 40832 | | macro avg | 0.817007 | 0.788165 | 0.788686 | 40832 | | weighted avg | 0.813257 | 0.795504 | 0.790711 | 40832 | it | | precision | recall | f1-score | support | |--------------|-----------|----------|----------|---------| | 0 | 0.721282 | 0.914669 | 0.806545 | 21528 | | 1 | 0.864887 | 0.607135 | 0.713445 | 19368 | | accuracy | | | 0.769024 | 40896 | | macro avg | 0.793084 | 0.760902 | 0.759995 | 40896 | | weighted avg | 0.789292 | 0.769024 | 0.762454 | 40896 | pt | | precision | recall | f1-score | support | |--------------|-----------|----------|----------|---------| | 0 | 0.717546 | 0.908167 | 0.801681 | 21637 | | 1 | 0.853628 | 0.599700 | 0.704481 | 19323 | | accuracy | | | 0.762646 | 40960 | | macro avg | 0.785587 | 0.753933 | 0.753081 | 40960 | | weighted avg | 0.781743 | 0.762646 | 0.755826 | 40960 | ru | | precision | recall | f1-score | support | |--------------|-----------|----------|----------|---------| | 0 | 0.741333 | 0.926500 | 0.823638 | 21211 | | 1 | 0.888667 | 0.644733 | 0.747298 | 19301 | | accuracy | | | 0.792259 | 40512 | | macro avg | 0.815000 | 0.785617 | 0.785468 | 40512 | | weighted avg | 0.811527 | 0.792259 | 0.787267 | 40512 | ## How to use ```python from transformers import XLMRobertaTokenizerFast, XLMRobertaForSequenceClassification # load tokenizer and model weights tokenizer = XLMRobertaTokenizerFast.from_pretrained('SkolkovoInstitute/xlmr_formality_classifier') model = XLMRobertaForSequenceClassification.from_pretrained('SkolkovoInstitute/xlmr_formality_classifier') # prepare the input batch = tokenizer.encode('ты супер', return_tensors='pt') # inference model(batch) ``` ## Licensing Information [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png