s1ghhh commited on
Commit
413cc71
·
1 Parent(s): 3f6c336
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": null,
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_dropped_llama.LlamaConfig",
8
+ "AutoModelForCausalLM": "modeling_dropped_llama.LlamaForCausalLM"
9
+ },
10
+ "drop_mlp_list": null,
11
+ "drop_attn_list": [33, 32, 35, 30],
12
+ "bos_token_id": 1,
13
+ "eos_token_id": 2,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 5120,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 13824,
18
+ "max_position_embeddings": 4096,
19
+ "model_type": "llama",
20
+ "num_attention_heads": 40,
21
+ "num_hidden_layers": 40,
22
+ "num_key_value_heads": 40,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_scaling": null,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "float16",
28
+ "transformers_version": "4.31.0.dev0",
29
+ "use_cache": true,
30
+ "vocab_size": 32000
31
+ }
32
+
configuration_dropped_llama.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ transformers==4.38.1"""
21
+ """ LLaMA model configuration"""
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29
+
30
+
31
+ class LlamaConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the LLaMA-7B.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32000):
43
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`LlamaModel`]
45
+ hidden_size (`int`, *optional*, defaults to 4096):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 11008):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
64
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
65
+ Llama 2 up to 4096, CodeLlama up to 16384.
66
+ initializer_range (`float`, *optional*, defaults to 0.02):
67
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
68
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
69
+ The epsilon used by the rms normalization layers.
70
+ use_cache (`bool`, *optional*, defaults to `True`):
71
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
72
+ relevant if `config.is_decoder=True`.
73
+ pad_token_id (`int`, *optional*):
74
+ Padding token id.
75
+ bos_token_id (`int`, *optional*, defaults to 1):
76
+ Beginning of stream token id.
77
+ eos_token_id (`int`, *optional*, defaults to 2):
78
+ End of stream token id.
79
+ pretraining_tp (`int`, *optional*, defaults to 1):
80
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
81
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
82
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
83
+ issue](https://github.com/pytorch/pytorch/issues/76232).
84
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
85
+ Whether to tie weight embeddings
86
+ rope_theta (`float`, *optional*, defaults to 10000.0):
87
+ The base period of the RoPE embeddings.
88
+ rope_scaling (`Dict`, *optional*):
89
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
90
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
91
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
92
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
93
+ these scaling strategies behave:
94
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
95
+ experimental feature, subject to breaking API changes in future versions.
96
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
97
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
98
+ attention_dropout (`float`, *optional*, defaults to 0.0):
99
+ The dropout ratio for the attention probabilities.
100
+
101
+ ```python
102
+ >>> from transformers import LlamaModel, LlamaConfig
103
+
104
+ >>> # Initializing a LLaMA llama-7b style configuration
105
+ >>> configuration = LlamaConfig()
106
+
107
+ >>> # Initializing a model from the llama-7b style configuration
108
+ >>> model = LlamaModel(configuration)
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "llama"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=32000,
120
+ hidden_size=4096,
121
+ intermediate_size=11008,
122
+ num_hidden_layers=32,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ hidden_act="silu",
126
+ max_position_embeddings=2048,
127
+ initializer_range=0.02,
128
+ rms_norm_eps=1e-6,
129
+ use_cache=True,
130
+ pad_token_id=None,
131
+ bos_token_id=1,
132
+ eos_token_id=2,
133
+ pretraining_tp=1,
134
+ tie_word_embeddings=False,
135
+ rope_theta=10000.0,
136
+ rope_scaling=None,
137
+ attention_bias=False,
138
+ attention_dropout=0.0,
139
+ drop_mlp_list=None,
140
+ drop_attn_list=None,
141
+ **kwargs,
142
+ ):
143
+ self.vocab_size = vocab_size
144
+ self.max_position_embeddings = max_position_embeddings
145
+ self.hidden_size = hidden_size
146
+ self.intermediate_size = intermediate_size
147
+ self.num_hidden_layers = num_hidden_layers
148
+ self.num_attention_heads = num_attention_heads
149
+
150
+ #####################################################################################################################
151
+
152
+ # ✨ trans bool into int
153
+ new_drop_attn_list = []
154
+ if drop_attn_list is not None:
155
+ for idx in range(len(drop_attn_list)):
156
+ if isinstance(drop_attn_list[idx], bool):
157
+ if drop_attn_list[idx] == True:
158
+ new_drop_attn_list.append(idx)
159
+ elif isinstance(drop_attn_list[idx], int):
160
+ new_drop_attn_list.append(drop_attn_list[idx])
161
+
162
+ new_drop_mlp_list = []
163
+ if drop_mlp_list is not None:
164
+ for idx in range(len(drop_mlp_list)):
165
+ if isinstance(drop_mlp_list[idx], bool):
166
+ if drop_mlp_list[idx] == True:
167
+ new_drop_mlp_list.append(idx)
168
+ elif isinstance(drop_mlp_list[idx], int):
169
+ new_drop_mlp_list.append(drop_mlp_list[idx])
170
+
171
+ #####################################################################################################################
172
+
173
+ if new_drop_mlp_list:
174
+ self.drop_mlp_list = []
175
+ for idx in range(self.num_hidden_layers):
176
+ self.drop_mlp_list.append(True if idx in new_drop_mlp_list else False)
177
+ else:
178
+ self.drop_mlp_list = [False] * self.num_hidden_layers
179
+
180
+ if new_drop_attn_list:
181
+ self.drop_attn_list = []
182
+ for idx in range(self.num_hidden_layers):
183
+ self.drop_attn_list.append(True if idx in new_drop_attn_list else False)
184
+ else:
185
+ self.drop_attn_list = [False] * self.num_hidden_layers
186
+
187
+ #####################################################################################################################
188
+
189
+ # for backward compatibility
190
+ if num_key_value_heads is None:
191
+ num_key_value_heads = num_attention_heads
192
+
193
+ self.num_key_value_heads = num_key_value_heads
194
+ self.hidden_act = hidden_act
195
+ self.initializer_range = initializer_range
196
+ self.rms_norm_eps = rms_norm_eps
197
+ self.pretraining_tp = pretraining_tp
198
+ self.use_cache = use_cache
199
+ self.rope_theta = rope_theta
200
+ self.rope_scaling = rope_scaling
201
+ self._rope_scaling_validation()
202
+ self.attention_bias = attention_bias
203
+ self.attention_dropout = attention_dropout
204
+
205
+ super().__init__(
206
+ pad_token_id=pad_token_id,
207
+ bos_token_id=bos_token_id,
208
+ eos_token_id=eos_token_id,
209
+ tie_word_embeddings=tie_word_embeddings,
210
+ **kwargs,
211
+ )
212
+
213
+ def _rope_scaling_validation(self):
214
+ """
215
+ Validate the `rope_scaling` configuration.
216
+ """
217
+ if self.rope_scaling is None:
218
+ return
219
+
220
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
221
+ raise ValueError(
222
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
223
+ f"got {self.rope_scaling}"
224
+ )
225
+ rope_scaling_type = self.rope_scaling.get("type", None)
226
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
227
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
228
+ raise ValueError(
229
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
230
+ )
231
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
232
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "temperature": 0.6,
7
+ "max_length": 4096,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.31.0.dev0"
10
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c032219be6d961f65c163ff9eff9b8b928457a92da1f1a304ffd4ea86f76691
3
+ size 9948693272
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec651f5d05472a91b9f6a48872270b63446b09cedfb4ccc901912557fac7a896
3
+ size 9904129368
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f6c3a24a8013f9ac268e88c526f4d8ed8e6507e1f957167fd5d09f85341eda5
3
+ size 6178962272
model.safetensors.index.json ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26031738880
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
27
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
37
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00003.safetensors",
39
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
40
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
45
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
47
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
48
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00003.safetensors",
49
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
50
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
51
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
52
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
53
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
54
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
55
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
57
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
58
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00003.safetensors",
59
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
60
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
61
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
62
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
63
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
64
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
65
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
67
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
68
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00003.safetensors",
69
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
70
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
71
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
72
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
73
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
74
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
75
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
77
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
78
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
84
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
87
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
97
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
107
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
117
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
118
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
119
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
120
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
121
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
122
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
123
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
124
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
125
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
127
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
129
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
130
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
131
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
132
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
133
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
134
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
135
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
137
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
138
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
147
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
153
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
154
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
157
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
162
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
163
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
164
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
165
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
167
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
168
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
169
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
170
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
171
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
172
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
173
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
174
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
175
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
177
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
178
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00003.safetensors",
179
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
180
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
181
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
182
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
183
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
184
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
185
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
187
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
188
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00003.safetensors",
189
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
190
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
191
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
192
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
193
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
194
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
195
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
197
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
198
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00003.safetensors",
199
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
200
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
201
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
202
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
203
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
204
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
205
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
207
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
208
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00003.safetensors",
209
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
210
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
211
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
212
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
213
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
214
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
215
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
217
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
218
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00003.safetensors",
219
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
220
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
221
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
222
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
223
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
224
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
225
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
227
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
228
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00003.safetensors",
229
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
230
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
231
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
232
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
233
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
234
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
235
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
237
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
238
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
239
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
240
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
241
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
242
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
247
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
249
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
250
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
251
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
252
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
253
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
254
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
255
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
257
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
258
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
259
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
260
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
261
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
262
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
263
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
264
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
265
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
267
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
268
+ "model.layers.32.input_layernorm.weight": "model-00003-of-00003.safetensors",
269
+ "model.layers.32.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
270
+ "model.layers.32.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
271
+ "model.layers.32.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
272
+ "model.layers.32.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
273
+ "model.layers.32.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
274
+ "model.layers.32.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
275
+ "model.layers.32.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
276
+ "model.layers.32.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
277
+ "model.layers.32.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
278
+ "model.layers.33.input_layernorm.weight": "model-00003-of-00003.safetensors",
279
+ "model.layers.33.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
280
+ "model.layers.33.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
281
+ "model.layers.33.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
282
+ "model.layers.33.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
283
+ "model.layers.33.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
284
+ "model.layers.33.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
285
+ "model.layers.33.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
286
+ "model.layers.33.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
287
+ "model.layers.33.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
288
+ "model.layers.34.input_layernorm.weight": "model-00003-of-00003.safetensors",
289
+ "model.layers.34.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
290
+ "model.layers.34.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
291
+ "model.layers.34.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
292
+ "model.layers.34.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
293
+ "model.layers.34.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
294
+ "model.layers.34.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
295
+ "model.layers.34.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
296
+ "model.layers.34.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
297
+ "model.layers.34.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
298
+ "model.layers.35.input_layernorm.weight": "model-00003-of-00003.safetensors",
299
+ "model.layers.35.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
300
+ "model.layers.35.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
301
+ "model.layers.35.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
302
+ "model.layers.35.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
303
+ "model.layers.35.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
304
+ "model.layers.35.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
305
+ "model.layers.35.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
306
+ "model.layers.35.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
307
+ "model.layers.35.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
308
+ "model.layers.36.input_layernorm.weight": "model-00003-of-00003.safetensors",
309
+ "model.layers.36.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
310
+ "model.layers.36.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
311
+ "model.layers.36.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
312
+ "model.layers.36.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
313
+ "model.layers.36.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
314
+ "model.layers.36.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
315
+ "model.layers.36.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
316
+ "model.layers.36.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
317
+ "model.layers.36.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
318
+ "model.layers.37.input_layernorm.weight": "model-00003-of-00003.safetensors",
319
+ "model.layers.37.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
320
+ "model.layers.37.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
321
+ "model.layers.37.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
322
+ "model.layers.37.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
323
+ "model.layers.37.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
324
+ "model.layers.37.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
325
+ "model.layers.37.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
326
+ "model.layers.37.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
327
+ "model.layers.37.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
328
+ "model.layers.38.input_layernorm.weight": "model-00003-of-00003.safetensors",
329
+ "model.layers.38.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
330
+ "model.layers.38.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
331
+ "model.layers.38.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
332
+ "model.layers.38.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
333
+ "model.layers.38.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
334
+ "model.layers.38.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
335
+ "model.layers.38.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
336
+ "model.layers.38.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
337
+ "model.layers.38.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
338
+ "model.layers.39.input_layernorm.weight": "model-00003-of-00003.safetensors",
339
+ "model.layers.39.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
340
+ "model.layers.39.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
341
+ "model.layers.39.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
342
+ "model.layers.39.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
343
+ "model.layers.39.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
344
+ "model.layers.39.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
345
+ "model.layers.39.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
346
+ "model.layers.39.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
347
+ "model.layers.39.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
348
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
349
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
350
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
351
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
352
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
353
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
354
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
355
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
356
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
357
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
358
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
359
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
360
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
361
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
362
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
363
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
364
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
365
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
366
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
367
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
368
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
369
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
370
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
371
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
372
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
373
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
374
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
375
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
376
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
377
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
378
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
379
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
380
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
381
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
382
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
383
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
384
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
385
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
386
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
387
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
388
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
389
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
390
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
391
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
392
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
393
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
394
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
395
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
396
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
397
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
398
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
399
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
400
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
401
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
402
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
403
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
404
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
405
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
406
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
407
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
408
+ "model.norm.weight": "model-00003-of-00003.safetensors"
409
+ }
410
+ }
modeling_dropped_llama.py ADDED
@@ -0,0 +1,1338 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ transformers==4.38.1"""
21
+ """ PyTorch LLaMA model."""
22
+ import math
23
+ import warnings
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
34
+ from transformers.modeling_outputs import (
35
+ BaseModelOutputWithPast,
36
+ CausalLMOutputWithPast,
37
+ QuestionAnsweringModelOutput,
38
+ SequenceClassifierOutputWithPast,
39
+ )
40
+ from transformers.modeling_utils import PreTrainedModel
41
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
42
+ from transformers.utils import (
43
+ add_start_docstrings,
44
+ add_start_docstrings_to_model_forward,
45
+ is_flash_attn_2_available,
46
+ is_flash_attn_greater_or_equal_2_10,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from .configuration_dropped_llama import LlamaConfig
51
+
52
+
53
+ # if is_flash_attn_2_available():
54
+ # from flash_attn import flash_attn_func, flash_attn_varlen_func
55
+ # from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
56
+
57
+
58
+ logger = logging.get_logger(__name__)
59
+
60
+ _CONFIG_FOR_DOC = "LlamaConfig"
61
+
62
+
63
+ def _get_unpad_data(attention_mask):
64
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
65
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
66
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
67
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
68
+ return (
69
+ indices,
70
+ cu_seqlens,
71
+ max_seqlen_in_batch,
72
+ )
73
+
74
+
75
+ class LlamaRMSNorm(nn.Module):
76
+ def __init__(self, hidden_size, eps=1e-6):
77
+ """
78
+ LlamaRMSNorm is equivalent to T5LayerNorm
79
+ """
80
+ super().__init__()
81
+ self.weight = nn.Parameter(torch.ones(hidden_size))
82
+ self.variance_epsilon = eps
83
+
84
+ def forward(self, hidden_states):
85
+ input_dtype = hidden_states.dtype
86
+ hidden_states = hidden_states.to(torch.float32)
87
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
88
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
89
+ return self.weight * hidden_states.to(input_dtype)
90
+
91
+
92
+ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
93
+
94
+
95
+ class LlamaRotaryEmbedding(nn.Module):
96
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
97
+ super().__init__()
98
+ self.dim = dim
99
+ self.max_position_embeddings = max_position_embeddings
100
+ self.base = base
101
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
102
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
103
+
104
+ @property
105
+ def sin_cached(self):
106
+ logger.warning_once(
107
+ "The sin_cached attribute will be removed in 4.40. Bear in mind that its contents changed in v4.38. Use "
108
+ "the forward method of RoPE from now on instead."
109
+ )
110
+ return self._sin_cached
111
+
112
+ @property
113
+ def cos_cached(self):
114
+ logger.warning_once(
115
+ "The cos_cached attribute will be removed in 4.40. Bear in mind that its contents changed in v4.38. Use "
116
+ "the forward method of RoPE from now on instead."
117
+ )
118
+ return self._cos_cached
119
+
120
+ def forward(self, x, position_ids, seq_len=None):
121
+ if seq_len is not None:
122
+ logger.warning_once("The `seq_len` argument is deprecated and unused. It will be removed in v4.40.")
123
+
124
+ # x: [bs, num_attention_heads, seq_len, head_size]
125
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
126
+ position_ids_expanded = position_ids[:, None, :].float()
127
+ freqs = (inv_freq_expanded @ position_ids_expanded).transpose(1, 2)
128
+ emb = torch.cat((freqs, freqs), dim=-1)
129
+ cos = emb.cos().to(dtype=x.dtype)
130
+ sin = emb.sin().to(dtype=x.dtype)
131
+ # backwards compatibility
132
+ self._cos_cached = cos
133
+ self._sin_cached = sin
134
+ return cos, sin
135
+
136
+
137
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
138
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
139
+
140
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
141
+ self.scaling_factor = scaling_factor
142
+ super().__init__(dim, max_position_embeddings, base, device)
143
+
144
+ def forward(self, x, position_ids, seq_len=None):
145
+ # difference to the original RoPE: a scaling factor is aplied to the position ids
146
+ position_ids = position_ids.float() / self.scaling_factor
147
+ cos, sin = super().forward(x, position_ids, seq_len)
148
+ return cos, sin
149
+
150
+
151
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
152
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
153
+
154
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
155
+ self.scaling_factor = scaling_factor
156
+ super().__init__(dim, max_position_embeddings, base, device)
157
+
158
+ def forward(self, x, position_ids, seq_len=None):
159
+ # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
160
+ seq_len = torch.max(position_ids) + 1
161
+ if seq_len > self.max_position_embeddings:
162
+ base = self.base * (
163
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
164
+ ) ** (self.dim / (self.dim - 2))
165
+ inv_freq = 1.0 / (
166
+ base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
167
+ )
168
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
169
+
170
+ cos, sin = super().forward(x, position_ids, seq_len)
171
+ return cos, sin
172
+
173
+
174
+ def rotate_half(x):
175
+ """Rotates half the hidden dims of the input."""
176
+ x1 = x[..., : x.shape[-1] // 2]
177
+ x2 = x[..., x.shape[-1] // 2 :]
178
+ return torch.cat((-x2, x1), dim=-1)
179
+
180
+
181
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
182
+ """Applies Rotary Position Embedding to the query and key tensors.
183
+
184
+ Args:
185
+ q (`torch.Tensor`): The query tensor.
186
+ k (`torch.Tensor`): The key tensor.
187
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
188
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
189
+ position_ids (`torch.Tensor`, *optional*):
190
+ Deprecated and unused.
191
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
192
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
193
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
194
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
195
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
196
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
197
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
198
+ Returns:
199
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
200
+ """
201
+ cos = cos.unsqueeze(unsqueeze_dim)
202
+ sin = sin.unsqueeze(unsqueeze_dim)
203
+ q_embed = (q * cos) + (rotate_half(q) * sin)
204
+ k_embed = (k * cos) + (rotate_half(k) * sin)
205
+ return q_embed, k_embed
206
+
207
+
208
+ class LlamaMLP(nn.Module):
209
+ def __init__(self, config):
210
+ super().__init__()
211
+ self.config = config
212
+ self.hidden_size = config.hidden_size
213
+ self.intermediate_size = config.intermediate_size
214
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
215
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
216
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
217
+ self.act_fn = ACT2FN[config.hidden_act]
218
+
219
+ def forward(self, x):
220
+ if self.config.pretraining_tp > 1:
221
+ slice = self.intermediate_size // self.config.pretraining_tp
222
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
223
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
224
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
225
+
226
+ gate_proj = torch.cat(
227
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
228
+ )
229
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
230
+
231
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
232
+ down_proj = [
233
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
234
+ ]
235
+ down_proj = sum(down_proj)
236
+ else:
237
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
238
+
239
+ return down_proj
240
+
241
+
242
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
243
+ """
244
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
245
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
246
+ """
247
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
248
+ if n_rep == 1:
249
+ return hidden_states
250
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
251
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
252
+
253
+
254
+ class LlamaAttention(nn.Module):
255
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
256
+
257
+ def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None, kv_cache_idx: Optional[int] = None):
258
+ super().__init__()
259
+ self.config = config
260
+ self.layer_idx = layer_idx
261
+ self.kv_cache_idx = kv_cache_idx
262
+ if layer_idx is None:
263
+ logger.warning_once(
264
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
265
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
266
+ "when creating this class."
267
+ )
268
+
269
+ self.attention_dropout = config.attention_dropout
270
+ self.hidden_size = config.hidden_size
271
+ self.num_heads = config.num_attention_heads
272
+ self.head_dim = self.hidden_size // self.num_heads
273
+ self.num_key_value_heads = config.num_key_value_heads
274
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
275
+ self.max_position_embeddings = config.max_position_embeddings
276
+ self.rope_theta = config.rope_theta
277
+ self.is_causal = True
278
+
279
+ if (self.head_dim * self.num_heads) != self.hidden_size:
280
+ raise ValueError(
281
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
282
+ f" and `num_heads`: {self.num_heads})."
283
+ )
284
+
285
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
286
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
287
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
288
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
289
+ self._init_rope()
290
+
291
+ def _init_rope(self):
292
+ if self.config.rope_scaling is None:
293
+ self.rotary_emb = LlamaRotaryEmbedding(
294
+ self.head_dim,
295
+ max_position_embeddings=self.max_position_embeddings,
296
+ base=self.rope_theta,
297
+ )
298
+ else:
299
+ scaling_type = self.config.rope_scaling["type"]
300
+ scaling_factor = self.config.rope_scaling["factor"]
301
+ if scaling_type == "linear":
302
+ self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
303
+ self.head_dim,
304
+ max_position_embeddings=self.max_position_embeddings,
305
+ scaling_factor=scaling_factor,
306
+ base=self.rope_theta,
307
+ )
308
+ elif scaling_type == "dynamic":
309
+ self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
310
+ self.head_dim,
311
+ max_position_embeddings=self.max_position_embeddings,
312
+ scaling_factor=scaling_factor,
313
+ base=self.rope_theta,
314
+ )
315
+ else:
316
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
317
+
318
+ def forward(
319
+ self,
320
+ hidden_states: torch.Tensor,
321
+ attention_mask: Optional[torch.Tensor] = None,
322
+ position_ids: Optional[torch.LongTensor] = None,
323
+ past_key_value: Optional[Cache] = None,
324
+ output_attentions: bool = False,
325
+ use_cache: bool = False,
326
+ cache_position: Optional[torch.LongTensor] = None,
327
+ **kwargs,
328
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
329
+ bsz, q_len, _ = hidden_states.size()
330
+
331
+ if self.config.pretraining_tp > 1:
332
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
333
+ query_slices = self.q_proj.weight.split(
334
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
335
+ )
336
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
337
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
338
+
339
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
340
+ query_states = torch.cat(query_states, dim=-1)
341
+
342
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
343
+ key_states = torch.cat(key_states, dim=-1)
344
+
345
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
346
+ value_states = torch.cat(value_states, dim=-1)
347
+
348
+ else:
349
+ query_states = self.q_proj(hidden_states)
350
+ key_states = self.k_proj(hidden_states)
351
+ value_states = self.v_proj(hidden_states)
352
+
353
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
354
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
355
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
356
+
357
+ past_key_value = getattr(self, "past_key_value", past_key_value)
358
+ cos, sin = self.rotary_emb(value_states, position_ids)
359
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
360
+
361
+ if past_key_value is not None:
362
+ # sin and cos are specific to RoPE models; position_ids needed for the static cache
363
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
364
+ key_states, value_states = past_key_value.update(key_states, value_states, self.kv_cache_idx, cache_kwargs)
365
+
366
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
367
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
368
+
369
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
370
+
371
+ if attention_mask is not None: # no matter the length, we just slice it
372
+ if cache_position is not None:
373
+ causal_mask = attention_mask[:, :, cache_position, : key_states.shape[-2]]
374
+ attn_weights = attn_weights + causal_mask
375
+
376
+ # upcast attention to fp32
377
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
378
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
379
+ attn_output = torch.matmul(attn_weights, value_states)
380
+
381
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
382
+ raise ValueError(
383
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
384
+ f" {attn_output.size()}"
385
+ )
386
+
387
+ attn_output = attn_output.transpose(1, 2).contiguous()
388
+
389
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
390
+
391
+ if self.config.pretraining_tp > 1:
392
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
393
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
394
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
395
+ else:
396
+ attn_output = self.o_proj(attn_output)
397
+
398
+ if not output_attentions:
399
+ attn_weights = None
400
+
401
+ return attn_output, attn_weights, past_key_value
402
+
403
+
404
+ class LlamaSdpaAttention(LlamaAttention):
405
+ """
406
+ Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
407
+ `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
408
+ SDPA API.
409
+ """
410
+
411
+ # Adapted from LlamaAttention.forward
412
+ def forward(
413
+ self,
414
+ hidden_states: torch.Tensor,
415
+ attention_mask: Optional[torch.Tensor] = None,
416
+ position_ids: Optional[torch.LongTensor] = None,
417
+ past_key_value: Optional[Cache] = None,
418
+ output_attentions: bool = False,
419
+ use_cache: bool = False,
420
+ cache_position: Optional[torch.LongTensor] = None,
421
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
422
+ if output_attentions:
423
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
424
+ logger.warning_once(
425
+ "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
426
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
427
+ )
428
+ return super().forward(
429
+ hidden_states=hidden_states,
430
+ attention_mask=attention_mask,
431
+ position_ids=position_ids,
432
+ past_key_value=past_key_value,
433
+ output_attentions=output_attentions,
434
+ use_cache=use_cache,
435
+ cache_position=cache_position,
436
+ )
437
+
438
+ bsz, q_len, _ = hidden_states.size()
439
+
440
+ query_states = self.q_proj(hidden_states)
441
+ key_states = self.k_proj(hidden_states)
442
+ value_states = self.v_proj(hidden_states)
443
+
444
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
445
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
446
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
447
+
448
+ cos, sin = self.rotary_emb(value_states, position_ids)
449
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
450
+
451
+ past_key_value = getattr(self, "past_key_value", past_key_value)
452
+
453
+ if past_key_value is not None:
454
+ # sin and cos are specific to RoPE models; position_ids needed for the static cache
455
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
456
+ key_states, value_states = past_key_value.update(key_states, value_states, self.kv_cache_idx, cache_kwargs)
457
+
458
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
459
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
460
+
461
+ causal_mask = attention_mask
462
+ if attention_mask is not None and cache_position is not None:
463
+ causal_mask = causal_mask[:, :, cache_position, : key_states.shape[-2]]
464
+
465
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
466
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
467
+ if query_states.device.type == "cuda" and causal_mask is not None:
468
+ query_states = query_states.contiguous()
469
+ key_states = key_states.contiguous()
470
+ value_states = value_states.contiguous()
471
+
472
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
473
+ query_states,
474
+ key_states,
475
+ value_states,
476
+ attn_mask=causal_mask,
477
+ dropout_p=self.attention_dropout if self.training else 0.0,
478
+ )
479
+
480
+ attn_output = attn_output.transpose(1, 2).contiguous()
481
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
482
+
483
+ attn_output = self.o_proj(attn_output)
484
+
485
+ return attn_output, None, past_key_value
486
+
487
+
488
+ LLAMA_ATTENTION_CLASSES = {
489
+ "eager": LlamaAttention,
490
+ "sdpa": LlamaSdpaAttention,
491
+ }
492
+
493
+
494
+ class LlamaDecoderLayer(nn.Module):
495
+ def __init__(self, config: LlamaConfig, layer_idx: int):
496
+ super().__init__()
497
+ self.hidden_size = config.hidden_size
498
+ self.layer_idx = layer_idx
499
+
500
+ self.kv_cache_idx = 0
501
+ for i in range(self.layer_idx):
502
+ if not config.drop_attn_list[i]:
503
+ self.kv_cache_idx += 1
504
+
505
+ self.drop_attn = config.drop_attn_list[layer_idx]
506
+ if self.drop_attn:
507
+ self.self_attn = None
508
+ self.input_layernorm = None
509
+ else:
510
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx, kv_cache_idx=self.kv_cache_idx)
511
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
512
+ self.drop_mlp = config.drop_mlp_list[layer_idx]
513
+ if self.drop_mlp:
514
+ self.mlp = None
515
+ self.post_attention_layernorm = None
516
+ else:
517
+ self.mlp = LlamaMLP(config)
518
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
519
+
520
+
521
+ def forward(
522
+ self,
523
+ hidden_states: torch.Tensor,
524
+ attention_mask: Optional[torch.Tensor] = None,
525
+ position_ids: Optional[torch.LongTensor] = None,
526
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
527
+ output_attentions: Optional[bool] = False,
528
+ use_cache: Optional[bool] = False,
529
+ cache_position: Optional[torch.LongTensor] = None,
530
+ **kwargs,
531
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
532
+ """
533
+ Args:
534
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
535
+ attention_mask (`torch.FloatTensor`, *optional*):
536
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
537
+ query_sequence_length, key_sequence_length)` if default attention is used.
538
+ output_attentions (`bool`, *optional*):
539
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
540
+ returned tensors for more detail.
541
+ use_cache (`bool`, *optional*):
542
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
543
+ (see `past_key_values`).
544
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
545
+ """
546
+ if "padding_mask" in kwargs:
547
+ warnings.warn(
548
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
549
+ )
550
+
551
+ if not self.drop_attn:
552
+ residual = hidden_states
553
+
554
+ hidden_states = self.input_layernorm(hidden_states)
555
+
556
+ # Self Attention
557
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
558
+ hidden_states=hidden_states,
559
+ attention_mask=attention_mask,
560
+ position_ids=position_ids,
561
+ past_key_value=past_key_value,
562
+ output_attentions=output_attentions,
563
+ use_cache=use_cache,
564
+ cache_position=cache_position,
565
+ **kwargs,
566
+ )
567
+ hidden_states = residual + hidden_states
568
+
569
+ if not self.drop_mlp:
570
+ # Fully Connected
571
+ residual = hidden_states
572
+ hidden_states = self.post_attention_layernorm(hidden_states)
573
+ hidden_states = self.mlp(hidden_states)
574
+ hidden_states = residual + hidden_states
575
+
576
+ outputs = (hidden_states,)
577
+
578
+ if output_attentions:
579
+ outputs += (self_attn_weights,)
580
+ if use_cache and not self.drop_attn:
581
+ outputs += (present_key_value,)
582
+ # print(outputs)
583
+ return outputs
584
+
585
+
586
+ LLAMA_START_DOCSTRING = r"""
587
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
588
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
589
+ etc.)
590
+
591
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
592
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
593
+ and behavior.
594
+
595
+ Parameters:
596
+ config ([`LlamaConfig`]):
597
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
598
+ load the weights associated with the model, only the configuration. Check out the
599
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
600
+ """
601
+
602
+
603
+ @add_start_docstrings(
604
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
605
+ LLAMA_START_DOCSTRING,
606
+ )
607
+ class LlamaPreTrainedModel(PreTrainedModel):
608
+ config_class = LlamaConfig
609
+ base_model_prefix = "model"
610
+ supports_gradient_checkpointing = True
611
+ _no_split_modules = ["LlamaDecoderLayer"]
612
+ _skip_keys_device_placement = ["past_key_values", "causal_mask"]
613
+ _supports_flash_attn_2 = True
614
+ _supports_sdpa = True
615
+ _supports_cache_class = True
616
+
617
+ def _init_weights(self, module):
618
+ std = self.config.initializer_range
619
+ if isinstance(module, nn.Linear):
620
+ module.weight.data.normal_(mean=0.0, std=std)
621
+ if module.bias is not None:
622
+ module.bias.data.zero_()
623
+ elif isinstance(module, nn.Embedding):
624
+ module.weight.data.normal_(mean=0.0, std=std)
625
+ if module.padding_idx is not None:
626
+ module.weight.data[module.padding_idx].zero_()
627
+
628
+ def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
629
+ if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
630
+ raise ValueError(
631
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
632
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
633
+ )
634
+
635
+ if max_cache_len > self.model.causal_mask.shape[-1] or self.device != self.model.causal_mask.device:
636
+ causal_mask = torch.full((max_cache_len, max_cache_len), fill_value=1, device=self.device)
637
+ self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False)
638
+
639
+ for layer in self.model.layers:
640
+ weights = layer.self_attn.o_proj.weight
641
+ layer.self_attn.past_key_value = cache_cls(
642
+ self.config, max_batch_size, max_cache_len, device=weights.device, dtype=weights.dtype
643
+ )
644
+
645
+ def _reset_cache(self):
646
+ for layer in self.model.layers:
647
+ layer.self_attn.past_key_value = None
648
+
649
+
650
+ LLAMA_INPUTS_DOCSTRING = r"""
651
+ Args:
652
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
653
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
654
+ it.
655
+
656
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
657
+ [`PreTrainedTokenizer.__call__`] for details.
658
+
659
+ [What are input IDs?](../glossary#input-ids)
660
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
661
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
662
+
663
+ - 1 for tokens that are **not masked**,
664
+ - 0 for tokens that are **masked**.
665
+
666
+ [What are attention masks?](../glossary#attention-mask)
667
+
668
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
669
+ [`PreTrainedTokenizer.__call__`] for details.
670
+
671
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
672
+ `past_key_values`).
673
+
674
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
675
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
676
+ information on the default strategy.
677
+
678
+ - 1 indicates the head is **not masked**,
679
+ - 0 indicates the head is **masked**.
680
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
681
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
682
+ config.n_positions - 1]`.
683
+
684
+ [What are position IDs?](../glossary#position-ids)
685
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
686
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
687
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
688
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
689
+
690
+ Two formats are allowed:
691
+ - a [`~cache_utils.Cache`] instance;
692
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
693
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
694
+ cache format.
695
+
696
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
697
+ legacy cache format will be returned.
698
+
699
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
700
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
701
+ of shape `(batch_size, sequence_length)`.
702
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
703
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
704
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
705
+ model's internal embedding lookup matrix.
706
+ use_cache (`bool`, *optional*):
707
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
708
+ `past_key_values`).
709
+ output_attentions (`bool`, *optional*):
710
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
711
+ tensors for more detail.
712
+ output_hidden_states (`bool`, *optional*):
713
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
714
+ more detail.
715
+ return_dict (`bool`, *optional*):
716
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
717
+ """
718
+
719
+
720
+ @add_start_docstrings(
721
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
722
+ LLAMA_START_DOCSTRING,
723
+ )
724
+ class LlamaModel(LlamaPreTrainedModel):
725
+ """
726
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
727
+
728
+ Args:
729
+ config: LlamaConfig
730
+ """
731
+
732
+ def __init__(self, config: LlamaConfig):
733
+ super().__init__(config)
734
+ self.padding_idx = config.pad_token_id
735
+ self.vocab_size = config.vocab_size
736
+
737
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
738
+ self.layers = nn.ModuleList(
739
+ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
740
+ )
741
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
742
+ self.gradient_checkpointing = False
743
+
744
+ # register a causal mask to separate causal and padding mask creation. Merging happends in the attention class
745
+ causal_mask = torch.full((config.max_position_embeddings, config.max_position_embeddings), fill_value=1)
746
+ self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False)
747
+ # Initialize weights and apply final processing
748
+ self.post_init()
749
+
750
+ def get_input_embeddings(self):
751
+ return self.embed_tokens
752
+
753
+ def set_input_embeddings(self, value):
754
+ self.embed_tokens = value
755
+
756
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
757
+ def forward(
758
+ self,
759
+ input_ids: torch.LongTensor = None,
760
+ attention_mask: Optional[torch.Tensor] = None,
761
+ position_ids: Optional[torch.LongTensor] = None,
762
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
763
+ inputs_embeds: Optional[torch.FloatTensor] = None,
764
+ use_cache: Optional[bool] = None,
765
+ output_attentions: Optional[bool] = None,
766
+ output_hidden_states: Optional[bool] = None,
767
+ return_dict: Optional[bool] = None,
768
+ cache_position: Optional[torch.LongTensor] = None,
769
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
770
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
771
+ output_hidden_states = (
772
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
773
+ )
774
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
775
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
776
+ # use_cache = False
777
+ if (input_ids is None) ^ (inputs_embeds is not None):
778
+ raise ValueError(
779
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
780
+ )
781
+
782
+ if self.gradient_checkpointing and self.training and use_cache:
783
+ logger.warning_once(
784
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
785
+ )
786
+ use_cache = False
787
+
788
+ if inputs_embeds is None:
789
+ inputs_embeds = self.embed_tokens(input_ids)
790
+
791
+ past_seen_tokens = 0
792
+ if use_cache: # kept for BC (cache positions)
793
+ if not isinstance(past_key_values, StaticCache):
794
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
795
+ past_seen_tokens = past_key_values.get_seq_length()
796
+
797
+ if cache_position is None:
798
+ cache_position = torch.arange(
799
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
800
+ )
801
+
802
+ if position_ids is None:
803
+ position_ids = cache_position.unsqueeze(0)
804
+
805
+ causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)
806
+
807
+ # embed positions
808
+ hidden_states = inputs_embeds
809
+
810
+ # decoder layers
811
+ all_hidden_states = () if output_hidden_states else None
812
+ all_self_attns = () if output_attentions else None
813
+ next_decoder_cache = None
814
+
815
+ for decoder_layer in self.layers:
816
+ if output_hidden_states:
817
+ all_hidden_states += (hidden_states,)
818
+
819
+ if self.gradient_checkpointing and self.training:
820
+ layer_outputs = self._gradient_checkpointing_func(
821
+ decoder_layer.__call__,
822
+ hidden_states,
823
+ causal_mask,
824
+ position_ids,
825
+ past_key_values,
826
+ output_attentions,
827
+ use_cache,
828
+ cache_position,
829
+ )
830
+ else:
831
+ layer_outputs = decoder_layer(
832
+ hidden_states,
833
+ attention_mask=causal_mask,
834
+ position_ids=position_ids,
835
+ past_key_value=past_key_values,
836
+ output_attentions=output_attentions,
837
+ use_cache=use_cache,
838
+ cache_position=cache_position,
839
+ )
840
+
841
+ hidden_states = layer_outputs[0]
842
+
843
+ if use_cache and not decoder_layer.drop_attn:
844
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
845
+
846
+ if output_attentions and not decoder_layer.drop_attn:
847
+ all_self_attns += (layer_outputs[1],)
848
+
849
+ hidden_states = self.norm(hidden_states)
850
+
851
+ # add hidden states from the last decoder layer
852
+ if output_hidden_states:
853
+ all_hidden_states += (hidden_states,)
854
+
855
+ next_cache = None
856
+ if use_cache:
857
+ next_cache = (
858
+ next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
859
+ )
860
+ # print(next_cache)
861
+ if not return_dict:
862
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
863
+ return BaseModelOutputWithPast(
864
+ last_hidden_state=hidden_states,
865
+ past_key_values=next_cache,
866
+ hidden_states=all_hidden_states,
867
+ attentions=all_self_attns,
868
+ )
869
+
870
+ def _update_causal_mask(self, attention_mask, input_tensor):
871
+ if self.config._attn_implementation == "flash_attention_2":
872
+ if attention_mask is not None and 0.0 in attention_mask:
873
+ return attention_mask
874
+ return None
875
+
876
+ batch_size, seq_length = input_tensor.shape[:2]
877
+ dtype = input_tensor.dtype
878
+ device = input_tensor.device
879
+
880
+ # support going beyond cached `max_position_embedding`
881
+ if seq_length > self.causal_mask.shape[-1]:
882
+ causal_mask = torch.full((2 * self.causal_mask.shape[-1], 2 * self.causal_mask.shape[-1]), fill_value=1)
883
+ self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False)
884
+
885
+ if hasattr(self, "causal_mask"): # we use the current dtype to avoid any overflows
886
+ causal_mask = (
887
+ self.causal_mask[None, None, :, :].repeat(batch_size, 1, 1, 1).to(dtype) * torch.finfo(dtype).min
888
+ )
889
+ else:
890
+ mask = torch.full(
891
+ (self.config.max_position_embeddings, self.config.max_position_embeddings),
892
+ fill_value=torch.finfo(dtype).min,
893
+ )
894
+ causal_mask = torch.triu(mask, diagonal=1)
895
+
896
+ causal_mask = causal_mask.to(dtype=dtype, device=device)
897
+ if attention_mask is not None and attention_mask.dim() == 2:
898
+ mask_length = attention_mask.shape[-1]
899
+ padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
900
+ causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(
901
+ padding_mask, torch.finfo(dtype).min
902
+ )
903
+
904
+ if self.config._attn_implementation == "sdpa":
905
+ is_tracing = torch.jit.is_tracing() or isinstance(input_tensor, torch.fx.Proxy)
906
+ if not is_tracing and attention_mask is not None and torch.any(attention_mask != 1):
907
+ causal_mask = causal_mask.mul(~torch.all(causal_mask == causal_mask.min(), dim=-1)[..., None]).to(
908
+ dtype
909
+ )
910
+
911
+ return causal_mask
912
+
913
+
914
+ class LlamaForCausalLM(LlamaPreTrainedModel):
915
+ _tied_weights_keys = ["lm_head.weight"]
916
+
917
+ def __init__(self, config):
918
+ super().__init__(config)
919
+ self.model = LlamaModel(config)
920
+ self.vocab_size = config.vocab_size
921
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
922
+
923
+ # Initialize weights and apply final processing
924
+ self.post_init()
925
+
926
+ def get_input_embeddings(self):
927
+ return self.model.embed_tokens
928
+
929
+ def set_input_embeddings(self, value):
930
+ self.model.embed_tokens = value
931
+
932
+ def get_output_embeddings(self):
933
+ return self.lm_head
934
+
935
+ def set_output_embeddings(self, new_embeddings):
936
+ self.lm_head = new_embeddings
937
+
938
+ def set_decoder(self, decoder):
939
+ self.model = decoder
940
+
941
+ def get_decoder(self):
942
+ return self.model
943
+
944
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
945
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
946
+ def forward(
947
+ self,
948
+ input_ids: torch.LongTensor = None,
949
+ attention_mask: Optional[torch.Tensor] = None,
950
+ position_ids: Optional[torch.LongTensor] = None,
951
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
952
+ inputs_embeds: Optional[torch.FloatTensor] = None,
953
+ labels: Optional[torch.LongTensor] = None,
954
+ use_cache: Optional[bool] = None,
955
+ output_attentions: Optional[bool] = None,
956
+ output_hidden_states: Optional[bool] = None,
957
+ return_dict: Optional[bool] = None,
958
+ cache_position: Optional[torch.LongTensor] = None,
959
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
960
+ r"""
961
+ Args:
962
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
963
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
964
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
965
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
966
+
967
+ Returns:
968
+
969
+ Example:
970
+
971
+ ```python
972
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
973
+
974
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
975
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
976
+
977
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
978
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
979
+
980
+ >>> # Generate
981
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
982
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
983
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
984
+ ```"""
985
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
986
+ output_hidden_states = (
987
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
988
+ )
989
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
990
+
991
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
992
+ outputs = self.model(
993
+ input_ids=input_ids,
994
+ attention_mask=attention_mask,
995
+ position_ids=position_ids,
996
+ past_key_values=past_key_values,
997
+ inputs_embeds=inputs_embeds,
998
+ use_cache=use_cache,
999
+ output_attentions=output_attentions,
1000
+ output_hidden_states=output_hidden_states,
1001
+ return_dict=return_dict,
1002
+ cache_position=cache_position,
1003
+ )
1004
+
1005
+ hidden_states = outputs[0]
1006
+ if self.config.pretraining_tp > 1:
1007
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1008
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1009
+ logits = torch.cat(logits, dim=-1)
1010
+ else:
1011
+ logits = self.lm_head(hidden_states)
1012
+ logits = logits.float()
1013
+
1014
+ loss = None
1015
+ if labels is not None:
1016
+ # Shift so that tokens < n predict n
1017
+ shift_logits = logits[..., :-1, :].contiguous()
1018
+ shift_labels = labels[..., 1:].contiguous()
1019
+ # Flatten the tokens
1020
+ loss_fct = CrossEntropyLoss()
1021
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1022
+ shift_labels = shift_labels.view(-1)
1023
+ # Enable model parallelism
1024
+ shift_labels = shift_labels.to(shift_logits.device)
1025
+ loss = loss_fct(shift_logits, shift_labels)
1026
+
1027
+ if not return_dict:
1028
+ output = (logits,) + outputs[1:]
1029
+ return (loss,) + output if loss is not None else output
1030
+
1031
+ return CausalLMOutputWithPast(
1032
+ loss=loss,
1033
+ logits=logits,
1034
+ past_key_values=outputs.past_key_values,
1035
+ hidden_states=outputs.hidden_states,
1036
+ attentions=outputs.attentions,
1037
+ )
1038
+
1039
+ def prepare_inputs_for_generation(
1040
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1041
+ ):
1042
+ past_length = 0
1043
+ if past_key_values is not None:
1044
+ if isinstance(past_key_values, Cache):
1045
+ cache_length = past_key_values.get_seq_length()
1046
+ past_length = past_key_values.seen_tokens
1047
+ max_cache_length = past_key_values.get_max_length()
1048
+ else:
1049
+ cache_length = past_length = past_key_values[0][0].shape[2]
1050
+ max_cache_length = None
1051
+
1052
+ # Keep only the unprocessed tokens:
1053
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1054
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1055
+ # input)
1056
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1057
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1058
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1059
+ # input_ids based on the past_length.
1060
+ elif past_length < input_ids.shape[1]:
1061
+ input_ids = input_ids[:, past_length:]
1062
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1063
+
1064
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1065
+ if (
1066
+ max_cache_length is not None
1067
+ and attention_mask is not None
1068
+ and cache_length + input_ids.shape[1] > max_cache_length
1069
+ ):
1070
+ attention_mask = attention_mask[:, -max_cache_length:]
1071
+
1072
+ position_ids = kwargs.get("position_ids", None)
1073
+ if attention_mask is not None and position_ids is None:
1074
+ # create position_ids on the fly for batch generation
1075
+ position_ids = attention_mask.long().cumsum(-1) - 1
1076
+ position_ids.masked_fill_(attention_mask == 0, 1)
1077
+ if past_key_values:
1078
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1079
+
1080
+ if past_key_value := getattr(self.model.layers[0].self_attn, "past_key_value", None):
1081
+ # generation with static cache
1082
+ past_length = past_key_value.get_seq_length()
1083
+ input_ids = input_ids[:, past_length:]
1084
+ position_ids = position_ids[:, past_length:]
1085
+
1086
+ # TODO @gante we should only keep a `cache_position` in generate, and do +=1.
1087
+ # same goes for position ids. Could also help with continued generation.
1088
+ cache_position = kwargs.get("cache_position", None)
1089
+ if cache_position is None:
1090
+ cache_position = torch.arange(
1091
+ past_length, past_length + position_ids.shape[-1], device=position_ids.device
1092
+ )
1093
+
1094
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1095
+ if inputs_embeds is not None and past_key_values is None:
1096
+ model_inputs = {"inputs_embeds": inputs_embeds}
1097
+ else:
1098
+ model_inputs = {"input_ids": input_ids}
1099
+
1100
+ model_inputs.update(
1101
+ {
1102
+ "position_ids": position_ids,
1103
+ "cache_position": cache_position,
1104
+ "past_key_values": past_key_values,
1105
+ "use_cache": kwargs.get("use_cache"),
1106
+ "attention_mask": attention_mask,
1107
+ }
1108
+ )
1109
+ return model_inputs
1110
+
1111
+ @staticmethod
1112
+ def _reorder_cache(past_key_values, beam_idx):
1113
+ reordered_past = ()
1114
+ for layer_past in past_key_values:
1115
+ reordered_past += (
1116
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1117
+ )
1118
+ return reordered_past
1119
+
1120
+
1121
+ @add_start_docstrings(
1122
+ """
1123
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1124
+
1125
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1126
+ (e.g. GPT-2) do.
1127
+
1128
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1129
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1130
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1131
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1132
+ each row of the batch).
1133
+ """,
1134
+ LLAMA_START_DOCSTRING,
1135
+ )
1136
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
1137
+ def __init__(self, config):
1138
+ super().__init__(config)
1139
+ self.num_labels = config.num_labels
1140
+ self.model = LlamaModel(config)
1141
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1142
+
1143
+ # Initialize weights and apply final processing
1144
+ self.post_init()
1145
+
1146
+ def get_input_embeddings(self):
1147
+ return self.model.embed_tokens
1148
+
1149
+ def set_input_embeddings(self, value):
1150
+ self.model.embed_tokens = value
1151
+
1152
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1153
+ def forward(
1154
+ self,
1155
+ input_ids: torch.LongTensor = None,
1156
+ attention_mask: Optional[torch.Tensor] = None,
1157
+ position_ids: Optional[torch.LongTensor] = None,
1158
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1159
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1160
+ labels: Optional[torch.LongTensor] = None,
1161
+ use_cache: Optional[bool] = None,
1162
+ output_attentions: Optional[bool] = None,
1163
+ output_hidden_states: Optional[bool] = None,
1164
+ return_dict: Optional[bool] = None,
1165
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1166
+ r"""
1167
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1168
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1169
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1170
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1171
+ """
1172
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1173
+
1174
+ transformer_outputs = self.model(
1175
+ input_ids,
1176
+ attention_mask=attention_mask,
1177
+ position_ids=position_ids,
1178
+ past_key_values=past_key_values,
1179
+ inputs_embeds=inputs_embeds,
1180
+ use_cache=use_cache,
1181
+ output_attentions=output_attentions,
1182
+ output_hidden_states=output_hidden_states,
1183
+ return_dict=return_dict,
1184
+ )
1185
+ hidden_states = transformer_outputs[0]
1186
+ logits = self.score(hidden_states)
1187
+
1188
+ if input_ids is not None:
1189
+ batch_size = input_ids.shape[0]
1190
+ else:
1191
+ batch_size = inputs_embeds.shape[0]
1192
+
1193
+ if self.config.pad_token_id is None and batch_size != 1:
1194
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1195
+ if self.config.pad_token_id is None:
1196
+ sequence_lengths = -1
1197
+ else:
1198
+ if input_ids is not None:
1199
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1200
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1201
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1202
+ sequence_lengths = sequence_lengths.to(logits.device)
1203
+ else:
1204
+ sequence_lengths = -1
1205
+
1206
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1207
+
1208
+ loss = None
1209
+ if labels is not None:
1210
+ labels = labels.to(logits.device)
1211
+ if self.config.problem_type is None:
1212
+ if self.num_labels == 1:
1213
+ self.config.problem_type = "regression"
1214
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1215
+ self.config.problem_type = "single_label_classification"
1216
+ else:
1217
+ self.config.problem_type = "multi_label_classification"
1218
+
1219
+ if self.config.problem_type == "regression":
1220
+ loss_fct = MSELoss()
1221
+ if self.num_labels == 1:
1222
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1223
+ else:
1224
+ loss = loss_fct(pooled_logits, labels)
1225
+ elif self.config.problem_type == "single_label_classification":
1226
+ loss_fct = CrossEntropyLoss()
1227
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1228
+ elif self.config.problem_type == "multi_label_classification":
1229
+ loss_fct = BCEWithLogitsLoss()
1230
+ loss = loss_fct(pooled_logits, labels)
1231
+ if not return_dict:
1232
+ output = (pooled_logits,) + transformer_outputs[1:]
1233
+ return ((loss,) + output) if loss is not None else output
1234
+
1235
+ return SequenceClassifierOutputWithPast(
1236
+ loss=loss,
1237
+ logits=pooled_logits,
1238
+ past_key_values=transformer_outputs.past_key_values,
1239
+ hidden_states=transformer_outputs.hidden_states,
1240
+ attentions=transformer_outputs.attentions,
1241
+ )
1242
+
1243
+
1244
+ @add_start_docstrings(
1245
+ """
1246
+ The Llama Model transformer with a span classification head on top for extractive question-answering tasks like
1247
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1248
+ """,
1249
+ LLAMA_START_DOCSTRING,
1250
+ )
1251
+ class LlamaForQuestionAnswering(LlamaPreTrainedModel):
1252
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Llama
1253
+ def __init__(self, config):
1254
+ super().__init__(config)
1255
+ self.transformer = LlamaModel(config)
1256
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1257
+
1258
+ # Initialize weights and apply final processing
1259
+ self.post_init()
1260
+
1261
+ def get_input_embeddings(self):
1262
+ return self.transformer.embed_tokens
1263
+
1264
+ def set_input_embeddings(self, value):
1265
+ self.transformer.embed_tokens = value
1266
+
1267
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1268
+ def forward(
1269
+ self,
1270
+ input_ids: Optional[torch.LongTensor] = None,
1271
+ attention_mask: Optional[torch.FloatTensor] = None,
1272
+ position_ids: Optional[torch.LongTensor] = None,
1273
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1274
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1275
+ start_positions: Optional[torch.LongTensor] = None,
1276
+ end_positions: Optional[torch.LongTensor] = None,
1277
+ output_attentions: Optional[bool] = None,
1278
+ output_hidden_states: Optional[bool] = None,
1279
+ return_dict: Optional[bool] = None,
1280
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1281
+ r"""
1282
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1283
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1284
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1285
+ are not taken into account for computing the loss.
1286
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1287
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1288
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1289
+ are not taken into account for computing the loss.
1290
+ """
1291
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1292
+
1293
+ outputs = self.transformer(
1294
+ input_ids,
1295
+ attention_mask=attention_mask,
1296
+ position_ids=position_ids,
1297
+ past_key_values=past_key_values,
1298
+ inputs_embeds=inputs_embeds,
1299
+ output_attentions=output_attentions,
1300
+ output_hidden_states=output_hidden_states,
1301
+ return_dict=return_dict,
1302
+ )
1303
+
1304
+ sequence_output = outputs[0]
1305
+
1306
+ logits = self.qa_outputs(sequence_output)
1307
+ start_logits, end_logits = logits.split(1, dim=-1)
1308
+ start_logits = start_logits.squeeze(-1).contiguous()
1309
+ end_logits = end_logits.squeeze(-1).contiguous()
1310
+
1311
+ total_loss = None
1312
+ if start_positions is not None and end_positions is not None:
1313
+ # If we are on multi-GPU, split add a dimension
1314
+ if len(start_positions.size()) > 1:
1315
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1316
+ if len(end_positions.size()) > 1:
1317
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1318
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1319
+ ignored_index = start_logits.size(1)
1320
+ start_positions = start_positions.clamp(0, ignored_index)
1321
+ end_positions = end_positions.clamp(0, ignored_index)
1322
+
1323
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1324
+ start_loss = loss_fct(start_logits, start_positions)
1325
+ end_loss = loss_fct(end_logits, end_positions)
1326
+ total_loss = (start_loss + end_loss) / 2
1327
+
1328
+ if not return_dict:
1329
+ output = (start_logits, end_logits) + outputs[2:]
1330
+ return ((total_loss,) + output) if total_loss is not None else output
1331
+
1332
+ return QuestionAnsweringModelOutput(
1333
+ loss=total_loss,
1334
+ start_logits=start_logits,
1335
+ end_logits=end_logits,
1336
+ hidden_states=outputs.hidden_states,
1337
+ attentions=outputs.attentions,
1338
+ )
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26031738880
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00003-of-00003.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
268
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
269
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
270
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
271
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
272
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
273
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
274
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
275
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
276
+ "model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
277
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
278
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
279
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
280
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
281
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
282
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
283
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
284
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
285
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
286
+ "model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
287
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
288
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
289
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
290
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
291
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
292
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
293
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
294
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
295
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
296
+ "model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
297
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
298
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
299
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
300
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
301
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
302
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
303
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
304
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
305
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
306
+ "model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
307
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
308
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
309
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
310
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
311
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
312
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
313
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
314
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
315
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
316
+ "model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
317
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
318
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
319
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
320
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
321
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
322
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
323
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
324
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
325
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
326
+ "model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
327
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
328
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
329
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
330
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
331
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
332
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
333
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
334
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
335
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
336
+ "model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
337
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
338
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
339
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
340
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
341
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
342
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
343
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
344
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
345
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
346
+ "model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
347
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
348
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
349
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
350
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
351
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
352
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
353
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
354
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
355
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
356
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
357
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
358
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
359
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
360
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
361
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
362
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
363
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
364
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
365
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
366
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
367
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
368
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
369
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
370
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
371
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
372
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
373
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
374
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
375
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
376
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
377
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
378
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
379
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
380
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
381
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
382
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
383
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
384
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
385
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
386
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
387
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
388
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
389
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
390
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
391
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
392
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
393
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
394
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
395
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
396
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
397
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
398
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
399
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
400
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
401
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
402
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
403
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
404
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
405
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
406
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
407
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
408
+ "model.norm.weight": "pytorch_model-00003-of-00003.bin"
409
+ }
410
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
13
+ "clean_up_tokenization_spaces": false,
14
+ "eos_token": {
15
+ "__type": "AddedToken",
16
+ "content": "</s>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "legacy": false,
23
+ "model_max_length": 1000000000000000019884624838656,
24
+ "pad_token": null,
25
+ "padding_side": "right",
26
+ "sp_model_kwargs": {},
27
+ "tokenizer_class": "LlamaTokenizer",
28
+ "unk_token": {
29
+ "__type": "AddedToken",
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ }
36
+ }