import random from datasets import load_dataset from transformers import AutoTokenizer import re from tqdm import tqdm import pandas as pd import json import concurrent.futures # ---------- Helper Functions (Unchanged) ---------- def extract_think_and_rest(text): """提取 ... 中的部分和剩余部分""" think_blocks = re.findall(r"(.*?)", text, flags=re.DOTALL) last_think_end = 0 for match in re.finditer(r"", text): last_think_end = match.end() rest_text = text[last_think_end:].strip() if last_think_end else text.strip() return think_blocks, rest_text def extract_think_sections(text: str): think_match = re.search(r"(.*?)", text, re.DOTALL) if think_match: think_content = think_match.group(1).strip() end_pos = think_match.end() post_think_content = text[end_pos:].strip() if not think_content: # if raise ValueError("Empty think block") return [think_content], post_think_content else: raise ValueError("Missing block.") def extract_think_and_solution_V2(text: str): pattern = ( r"<\|begin_of_thought\|>(.*?)<\|end_of_thought\|>\s*" r"<\|begin_of_solution\|>(.*?)<\|end_of_solution\|>" ) match = re.search(pattern, text, re.DOTALL) if match: think_content = match.group(1).strip() post_think_content = match.group(2).strip() if not think_content: raise ValueError("Empty thought block in V2.") return [think_content], post_think_content else: raise ValueError("Missing required <|begin_of_thought|> or <|begin_of_solution|> blocks.") # ---------- Worker function for multithreading (Unchanged) ---------- def process_single_item(args): item, dataset_name, tokenizer, format_tokenizer, max_prompt_token_len_config = args try: if dataset_name == "OpenR1-Math-220k": problem = item["problem"].strip() response_full = item["generations"][0].strip() reasoning_blocks, answer = extract_think_sections(response_full) elif dataset_name == "OpenThoughts-114k-math": problem = item["problem"].strip() response_full = item["conversations"][1]["value"].strip() reasoning_blocks, answer = extract_think_and_solution_V2(response_full) elif dataset_name == "reasoning-v1-20m": problem = item.get("prompt", "").strip() response_full = item.get("response", "").strip() reasoning_blocks, answer = extract_think_sections(response_full) elif dataset_name == "OpenThoughts-114k-Code_decontaminated": problem = item["problem"].strip() # response_full = item.get("response", "").strip() # reasoning_blocks, answer = extract_think_sections(response_full) reasoning_blocks = [item["deepseek_reasoning"]] answer = item["deepseek_solution"] elif dataset_name == "Medical-R1-Distill-Data": problem = item["question"].strip() # response_full = item.get("response", "").strip() # reasoning_blocks, answer = extract_think_sections(response_full) reasoning_blocks = [item["reasoning (reasoning_content)"]] answer = item["response (content)"] else: return None if not reasoning_blocks or not reasoning_blocks[0]: return None reasoning = reasoning_blocks[0].strip() solution = answer.strip() input_token_count = len(tokenizer.tokenize(problem)) output_token_count = len(tokenizer.tokenize(solution)) reasoning_token_count = len(tokenizer.tokenize(reasoning)) instruct_info = ( "Given a and its corresponding , your task is to predict how many tokens are consumed in the process of arriving at the final to the problem. Generally speaking, the more complex the problem is, the more tokens are required.\n" f"\n{problem}\n\n\n" f"\n{solution}\n\n" f"The Problem has {input_token_count} tokens, and the Solution has {output_token_count} tokens.\n\n\n" "Please provide a detailed chain-of-thought reasoning process and include your thought process within tags. " "Your final answer should be enclosed within tags.\n\n" "Please return the predicted number of tokens in JSON format: \n```json\n{\"count\": int}\n```\n\n" "Example format:\n" " Step-by-step reasoning, including self-reflection and corrections if necessary. [Limited by 1024 tokens] \n" " Summary of the thought process leading to the final token count and your predicted token count in json format: \n```json\n{\"count\": int}\n```\n [Limited by 512 tokens]\n" "\n\n" "Let me solve this step by step.\n" ) cot_info = "" messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": instruct_info.strip()}, ] prompt = format_tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) prompt += cot_info prompt_token_len = len(format_tokenizer.tokenize(prompt)) if prompt_token_len <= max_prompt_token_len_config - 10: return { "prompt": prompt, "ground_truth": reasoning_token_count, "data_source": dataset_name, "prompt_token_len": prompt_token_len, } return None except ValueError: return None except Exception as e: print(f"Error processing item for {dataset_name}: {e}") return None # ---------- 参数设置 (Unchanged for original purpose, but test_size's role in splitting changes) ---------- # train_size = 100000 # This now primarily influences num_items_to_sample_raw test_size = 1000 # This now primarily influences num_items_to_sample_raw; actual test split is fixed max_prompt_token_len = 4096 random_seed = 42 # This is the fixed random seed NUM_THREADS = 16 # Set the fixed random seed for Python's `random` module # This will affect `random.sample` used for splitting random.seed(random_seed) # ---------- 加载并打乱数据集 (Logic largely unchanged, seed is used by dataset.shuffle) ---------- datasets_config = { # "OpenR1-Math-220k": "/workspace/0407_nips/data_preprocess/OpenR1-Math-220k/data", # "reasoning-v1-20m": "/workspace/0407_nips/data_preprocess/reasoning-v1-20m/data", # "OpenThoughts-114k-math": "/workspace/0407_nips/data_preprocess/OpenThoughts-114k-math/data", "OpenThoughts-114k-Code_decontaminated": "/workspace/0407_nips/data_preprocess/OpenThoughts-114k-Code_decontaminated/data", # "Medical-R1-Distill-Data": "/workspace/0407_nips/data_preprocess/Medical-R1-Distill-Data" } for name, path in datasets_config.items(): print(f"Processing dataset: {name}") try: dataset_hf = load_dataset(path, trust_remote_code=True)["train"] except Exception as e: print(f"Error loading dataset {name} from {path}: {e}") continue print(len(dataset_hf)) # num_items_to_sample_raw = train_size + test_size + 1000 # actual_num_to_sample = min(num_items_to_sample_raw, len(dataset_hf)) # if actual_num_to_sample < num_items_to_sample_raw: # print(f"Warning: Dataset {name} has only {len(dataset_hf)} items. Sampling {actual_num_to_sample} instead of {num_items_to_sample_raw}.") # if actual_num_to_sample == 0: # print(f"Skipping dataset {name} as it has no items or actual_num_to_sample is 0.") # continue # # Shuffling raw dataset with the fixed seed # dataset_selected = dataset_hf.shuffle(seed=random_seed).select(range(actual_num_to_sample)) # .select(range(102000)) dataset_selected = dataset_hf.shuffle(seed=random_seed) tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1") format_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") processed_item_data_list = [] tasks_args_list = [] print(f"Preparing tasks for {name}...") for item in dataset_selected: tasks_args_list.append((item, name, tokenizer, format_tokenizer, max_prompt_token_len)) print(f"Submitting {len(tasks_args_list)} tasks to thread pool for {name}...") with concurrent.futures.ThreadPoolExecutor(max_workers=NUM_THREADS) as executor: future_to_item_args = {executor.submit(process_single_item, args): args for args in tasks_args_list} for future in tqdm(concurrent.futures.as_completed(future_to_item_args), total=len(tasks_args_list), desc=f"Processing items for {name}"): try: result = future.result() if result: processed_item_data_list.append(result) except Exception as exc: # item_arg_tuple = future_to_item_args[future] # Uncomment if needed for debugging print(f'Item generated an exception during future.result(): {exc}') records = [] count = 0 print(f"Collected {len(processed_item_data_list)} valid processed items for {name}. Assigning IDs...") # The original code had a cap here. We keep it. # This `num_items_to_sample_raw` acts as an upper limit on total records considered for splitting. for item_data in processed_item_data_list: # if len(records) >= num_items_to_sample_raw: # break item_data["ids"] = f"{name}_{count}" records.append(item_data) count += 1 if not records: print(f"No valid records generated for dataset {name} after filtering and ID assignment. Skipping saving.") continue # ---------- MODIFIED: 拆分训练集和测试集 ---------- # Test set is fixed at 1000 (or fewer if not enough data) # Training set is everything else. # random_seed is already set globally for `random` module. target_test_set_size = 1000 # Your requirement num_available_records = len(records) train_records = [] test_records = [] if num_available_records == 0: print(f"No records available for splitting for {name}.") elif num_available_records <= target_test_set_size: # If we have 1000 or fewer records, all go to test set, train is empty print(f"Warning: Only {num_available_records} records available for {name}. All will be used for the test set.") test_records = list(records) # Make a copy train_records = [] else: # We have more than 1000 records. Sample 1000 for test set. # `random.sample` uses the seed set by `random.seed(random_seed)` test_indices = sorted(random.sample(range(num_available_records), target_test_set_size)) current_test_idx_ptr = 0 for i in range(num_available_records): if current_test_idx_ptr < len(test_indices) and i == test_indices[current_test_idx_ptr]: test_records.append(records[i]) current_test_idx_ptr += 1 else: train_records.append(records[i]) # Sanity check if len(test_records) != target_test_set_size: print(f"Error: Test set size mismatch. Expected {target_test_set_size}, got {len(test_records)}") if len(train_records) != num_available_records - target_test_set_size: print(f"Error: Train set size mismatch. Expected {num_available_records - target_test_set_size}, got {len(train_records)}") # ---------- 保存 (Unchanged other than variable names if needed) ---------- if train_records: df_train = pd.DataFrame(train_records) df_train.to_parquet(f"v2_train_counting_dataset_{name}_{len(df_train)}.parquet", index=False) else: print(f"No training records to save for {name}.") if test_records: df_test = pd.DataFrame(test_records) df_test.to_parquet(f"v2_test_counting_dataset_{name}_{len(df_test)}.parquet", index=False) else: print(f"No test records to save for {name}.") print(f"✅ Successfully processed dataset {name}") print(f" Saved Train samples: {len(train_records)}, Test samples: {len(test_records)}") print("-" * 30) print("All datasets processed.")