Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +525 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +72 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/all-mpnet-base-v2
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
pipeline_tag: sentence-similarity
|
7 |
+
tags:
|
8 |
+
- sentence-transformers
|
9 |
+
- sentence-similarity
|
10 |
+
- feature-extraction
|
11 |
+
- generated_from_trainer
|
12 |
+
- dataset_size:300000
|
13 |
+
- loss:CoSENTLoss
|
14 |
+
widget:
|
15 |
+
- source_sentence: SELECT DISTINCT count(alias3.col1) , alias1.col2 FROM table1 AS
|
16 |
+
alias1 JOIN table2 AS alias2 ON alias1.col2 = alias2.col2 JOIN table3 AS alias3
|
17 |
+
ON alias1.col1 = alias3.col1 WHERE alias2.col3 = str AND alias3.year = num GROUP
|
18 |
+
BY alias1.col2
|
19 |
+
sentences:
|
20 |
+
- SELECT col1 , avg(col2) FROM table1 WHERE col3 LIKE str GROUP BY col1
|
21 |
+
- SELECT col1 , col2 FROM table1 WHERE col3 LIKE str GROUP BY col1 ORDER BY count(*)
|
22 |
+
DESC LIMIT num
|
23 |
+
- SELECT col1 , avg(col2) FROM table1 GROUP BY col1 ORDER BY avg(col2)
|
24 |
+
- source_sentence: SELECT alias2.year FROM table1 AS alias1 JOIN table2 AS alias2
|
25 |
+
ON alias1.col1 = alias2.col2 WHERE alias1.alias1 = str
|
26 |
+
sentences:
|
27 |
+
- SELECT alias1.col1 , alias2.col2 FROM table1 AS alias1 JOIN table2 AS alias2 ON
|
28 |
+
alias1.col3 = alias2.col3
|
29 |
+
- SELECT DISTINCT alias1.col1 FROM table1 AS alias1 JOIN table2 AS alias2 ON alias2.col2
|
30 |
+
= alias1.col3 JOIN table3 AS alias3 ON alias2.col4 = alias3.col3 WHERE alias3.col5
|
31 |
+
> num
|
32 |
+
- SELECT col1 FROM table1 ORDER BY col2 LIMIT num
|
33 |
+
- source_sentence: SELECT DISTINCT count(alias2.col1) FROM table1 AS alias1 JOIN table2
|
34 |
+
AS alias2 ON alias1.col2 = alias2.col2 WHERE alias1.col3 = str
|
35 |
+
sentences:
|
36 |
+
- SELECT alias3.col1 FROM table1 AS alias1 JOIN table2 AS alias2 ON alias1.col2
|
37 |
+
= alias2.col2 JOIN table3 AS alias3 ON alias2.col3 = alias3.col3 WHERE alias1.col4
|
38 |
+
= str AND alias1.col5 = str
|
39 |
+
- SELECT count(DISTINCT col1) FROM table1 WHERE col1 NOT IN ( SELECT col2 FROM table2
|
40 |
+
)
|
41 |
+
- SELECT count(*) FROM table1 WHERE col1 = str AND col2 < num
|
42 |
+
- source_sentence: SELECT alias1.col1 FROM table1 AS alias1 JOIN table2 AS alias2
|
43 |
+
ON alias1.col2 = alias2.col2 WHERE alias2.col3 LIKE str
|
44 |
+
sentences:
|
45 |
+
- SELECT col1 FROM table1 ORDER BY col2 DESC
|
46 |
+
- SELECT col1 FROM table1 WHERE col2 NOT IN (SELECT col2 FROM table2)
|
47 |
+
- SELECT alias1.col1 , alias1.col2 , alias1.col3 FROM table1 AS alias1 JOIN table2
|
48 |
+
AS alias2 ON alias1.col4 = alias2.col5 ORDER BY alias2.col6 LIMIT num
|
49 |
+
- source_sentence: SELECT alias1.col1 FROM table1 AS alias1 JOIN table2 AS alias2
|
50 |
+
ON alias1.col2 = alias2.col2 JOIN table3 AS alias3 ON alias2.col3 = alias3.col3
|
51 |
+
WHERE alias3.col4 = str INTERSECT SELECT alias1.col1 FROM table1 AS alias1 JOIN
|
52 |
+
table2 AS alias2 ON alias1.col2 = alias2.col2 JOIN table3 AS alias3 ON alias2.col3
|
53 |
+
= alias3.col3 WHERE alias3.col4 = str
|
54 |
+
sentences:
|
55 |
+
- SELECT count(*) FROM table1
|
56 |
+
- SELECT count(DISTINCT col1) FROM table1
|
57 |
+
- SELECT count(col1) FROM table1 WHERE col2 = num
|
58 |
+
---
|
59 |
+
|
60 |
+
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
61 |
+
|
62 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
63 |
+
|
64 |
+
## Model Details
|
65 |
+
|
66 |
+
### Model Description
|
67 |
+
- **Model Type:** Sentence Transformer
|
68 |
+
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
|
69 |
+
- **Maximum Sequence Length:** 384 tokens
|
70 |
+
- **Output Dimensionality:** 768 tokens
|
71 |
+
- **Similarity Function:** Cosine Similarity
|
72 |
+
<!-- - **Training Dataset:** Unknown -->
|
73 |
+
<!-- - **Language:** Unknown -->
|
74 |
+
<!-- - **License:** Unknown -->
|
75 |
+
|
76 |
+
### Model Sources
|
77 |
+
|
78 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
79 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
80 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
81 |
+
|
82 |
+
### Full Model Architecture
|
83 |
+
|
84 |
+
```
|
85 |
+
SentenceTransformer(
|
86 |
+
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
|
87 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
88 |
+
(2): Normalize()
|
89 |
+
)
|
90 |
+
```
|
91 |
+
|
92 |
+
## Usage
|
93 |
+
|
94 |
+
### Direct Usage (Sentence Transformers)
|
95 |
+
|
96 |
+
First install the Sentence Transformers library:
|
97 |
+
|
98 |
+
```bash
|
99 |
+
pip install -U sentence-transformers
|
100 |
+
```
|
101 |
+
|
102 |
+
Then you can load this model and run inference.
|
103 |
+
```python
|
104 |
+
from sentence_transformers import SentenceTransformer
|
105 |
+
|
106 |
+
# Download from the 🤗 Hub
|
107 |
+
model = SentenceTransformer("s2593817/sft-sql-embedding")
|
108 |
+
# Run inference
|
109 |
+
sentences = [
|
110 |
+
'SELECT alias1.col1 FROM table1 AS alias1 JOIN table2 AS alias2 ON alias1.col2 = alias2.col2 JOIN table3 AS alias3 ON alias2.col3 = alias3.col3 WHERE alias3.col4 = str INTERSECT SELECT alias1.col1 FROM table1 AS alias1 JOIN table2 AS alias2 ON alias1.col2 = alias2.col2 JOIN table3 AS alias3 ON alias2.col3 = alias3.col3 WHERE alias3.col4 = str',
|
111 |
+
'SELECT count(col1) FROM table1 WHERE col2 = num',
|
112 |
+
'SELECT count(DISTINCT col1) FROM table1',
|
113 |
+
]
|
114 |
+
embeddings = model.encode(sentences)
|
115 |
+
print(embeddings.shape)
|
116 |
+
# [3, 768]
|
117 |
+
|
118 |
+
# Get the similarity scores for the embeddings
|
119 |
+
similarities = model.similarity(embeddings, embeddings)
|
120 |
+
print(similarities.shape)
|
121 |
+
# [3, 3]
|
122 |
+
```
|
123 |
+
|
124 |
+
<!--
|
125 |
+
### Direct Usage (Transformers)
|
126 |
+
|
127 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
128 |
+
|
129 |
+
</details>
|
130 |
+
-->
|
131 |
+
|
132 |
+
<!--
|
133 |
+
### Downstream Usage (Sentence Transformers)
|
134 |
+
|
135 |
+
You can finetune this model on your own dataset.
|
136 |
+
|
137 |
+
<details><summary>Click to expand</summary>
|
138 |
+
|
139 |
+
</details>
|
140 |
+
-->
|
141 |
+
|
142 |
+
<!--
|
143 |
+
### Out-of-Scope Use
|
144 |
+
|
145 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
146 |
+
-->
|
147 |
+
|
148 |
+
<!--
|
149 |
+
## Bias, Risks and Limitations
|
150 |
+
|
151 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
152 |
+
-->
|
153 |
+
|
154 |
+
<!--
|
155 |
+
### Recommendations
|
156 |
+
|
157 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
158 |
+
-->
|
159 |
+
|
160 |
+
## Training Details
|
161 |
+
|
162 |
+
### Training Dataset
|
163 |
+
|
164 |
+
#### Unnamed Dataset
|
165 |
+
|
166 |
+
|
167 |
+
* Size: 300,000 training samples
|
168 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
169 |
+
* Approximate statistics based on the first 1000 samples:
|
170 |
+
| | sentence1 | sentence2 | score |
|
171 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
172 |
+
| type | string | string | float |
|
173 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 38.49 tokens</li><li>max: 189 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 37.44 tokens</li><li>max: 153 tokens</li></ul> | <ul><li>min: 0.04</li><li>mean: 0.36</li><li>max: 1.0</li></ul> |
|
174 |
+
* Samples:
|
175 |
+
| sentence1 | sentence2 | score |
|
176 |
+
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------|
|
177 |
+
| <code>SELECT DISTINCT count(DISTINCT alias4.col1) , alias3.col2 FROM table1 AS alias1 JOIN table2 AS alias2 ON alias1.col3 = alias2.col3 JOIN table3 AS alias3 ON alias3.col4 = alias1.col4 JOIN table4 AS alias4 ON alias3.col4 = alias4.col5 WHERE alias2.col6 = str GROUP BY alias3.col2 ORDER BY count(DISTINCT alias4.col1) DESC</code> | <code>SELECT count(*) FROM table1 WHERE col1 = str</code> | <code>0.14221014492753623</code> |
|
178 |
+
| <code>SELECT DISTINCT count(alias2.col1) FROM table1 AS alias1 JOIN table2 AS alias2 ON alias1.col2 = alias2.col2 WHERE alias1.col3 = str</code> | <code>SELECT alias3.col1 FROM table1 AS alias1 JOIN table2 AS alias2 ON alias1.col2 = alias2.col2 JOIN table3 AS alias3 ON alias2.col3 = alias3.col3 WHERE alias1.col4 = str AND alias1.col5 = str</code> | <code>0.5468686868686868</code> |
|
179 |
+
| <code>SELECT count(*) FROM table1</code> | <code>SELECT count(*) FROM table1 WHERE col1 LIKE str</code> | <code>0.6269230769230769</code> |
|
180 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
181 |
+
```json
|
182 |
+
{
|
183 |
+
"scale": 20.0,
|
184 |
+
"similarity_fct": "pairwise_cos_sim"
|
185 |
+
}
|
186 |
+
```
|
187 |
+
|
188 |
+
### Training Hyperparameters
|
189 |
+
#### Non-Default Hyperparameters
|
190 |
+
|
191 |
+
- `per_device_train_batch_size`: 160
|
192 |
+
- `learning_rate`: 2e-05
|
193 |
+
- `num_train_epochs`: 8
|
194 |
+
- `warmup_ratio`: 0.2
|
195 |
+
- `fp16`: True
|
196 |
+
- `dataloader_num_workers`: 16
|
197 |
+
- `batch_sampler`: no_duplicates
|
198 |
+
|
199 |
+
#### All Hyperparameters
|
200 |
+
<details><summary>Click to expand</summary>
|
201 |
+
|
202 |
+
- `overwrite_output_dir`: False
|
203 |
+
- `do_predict`: False
|
204 |
+
- `eval_strategy`: no
|
205 |
+
- `prediction_loss_only`: True
|
206 |
+
- `per_device_train_batch_size`: 160
|
207 |
+
- `per_device_eval_batch_size`: 8
|
208 |
+
- `per_gpu_train_batch_size`: None
|
209 |
+
- `per_gpu_eval_batch_size`: None
|
210 |
+
- `gradient_accumulation_steps`: 1
|
211 |
+
- `eval_accumulation_steps`: None
|
212 |
+
- `learning_rate`: 2e-05
|
213 |
+
- `weight_decay`: 0.0
|
214 |
+
- `adam_beta1`: 0.9
|
215 |
+
- `adam_beta2`: 0.999
|
216 |
+
- `adam_epsilon`: 1e-08
|
217 |
+
- `max_grad_norm`: 1.0
|
218 |
+
- `num_train_epochs`: 8
|
219 |
+
- `max_steps`: -1
|
220 |
+
- `lr_scheduler_type`: linear
|
221 |
+
- `lr_scheduler_kwargs`: {}
|
222 |
+
- `warmup_ratio`: 0.2
|
223 |
+
- `warmup_steps`: 0
|
224 |
+
- `log_level`: passive
|
225 |
+
- `log_level_replica`: warning
|
226 |
+
- `log_on_each_node`: True
|
227 |
+
- `logging_nan_inf_filter`: True
|
228 |
+
- `save_safetensors`: True
|
229 |
+
- `save_on_each_node`: False
|
230 |
+
- `save_only_model`: False
|
231 |
+
- `restore_callback_states_from_checkpoint`: False
|
232 |
+
- `no_cuda`: False
|
233 |
+
- `use_cpu`: False
|
234 |
+
- `use_mps_device`: False
|
235 |
+
- `seed`: 42
|
236 |
+
- `data_seed`: None
|
237 |
+
- `jit_mode_eval`: False
|
238 |
+
- `use_ipex`: False
|
239 |
+
- `bf16`: False
|
240 |
+
- `fp16`: True
|
241 |
+
- `fp16_opt_level`: O1
|
242 |
+
- `half_precision_backend`: auto
|
243 |
+
- `bf16_full_eval`: False
|
244 |
+
- `fp16_full_eval`: False
|
245 |
+
- `tf32`: None
|
246 |
+
- `local_rank`: 0
|
247 |
+
- `ddp_backend`: None
|
248 |
+
- `tpu_num_cores`: None
|
249 |
+
- `tpu_metrics_debug`: False
|
250 |
+
- `debug`: []
|
251 |
+
- `dataloader_drop_last`: False
|
252 |
+
- `dataloader_num_workers`: 16
|
253 |
+
- `dataloader_prefetch_factor`: None
|
254 |
+
- `past_index`: -1
|
255 |
+
- `disable_tqdm`: False
|
256 |
+
- `remove_unused_columns`: True
|
257 |
+
- `label_names`: None
|
258 |
+
- `load_best_model_at_end`: False
|
259 |
+
- `ignore_data_skip`: False
|
260 |
+
- `fsdp`: []
|
261 |
+
- `fsdp_min_num_params`: 0
|
262 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
263 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
264 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
265 |
+
- `deepspeed`: None
|
266 |
+
- `label_smoothing_factor`: 0.0
|
267 |
+
- `optim`: adamw_torch
|
268 |
+
- `optim_args`: None
|
269 |
+
- `adafactor`: False
|
270 |
+
- `group_by_length`: False
|
271 |
+
- `length_column_name`: length
|
272 |
+
- `ddp_find_unused_parameters`: None
|
273 |
+
- `ddp_bucket_cap_mb`: None
|
274 |
+
- `ddp_broadcast_buffers`: False
|
275 |
+
- `dataloader_pin_memory`: True
|
276 |
+
- `dataloader_persistent_workers`: False
|
277 |
+
- `skip_memory_metrics`: True
|
278 |
+
- `use_legacy_prediction_loop`: False
|
279 |
+
- `push_to_hub`: False
|
280 |
+
- `resume_from_checkpoint`: None
|
281 |
+
- `hub_model_id`: None
|
282 |
+
- `hub_strategy`: every_save
|
283 |
+
- `hub_private_repo`: False
|
284 |
+
- `hub_always_push`: False
|
285 |
+
- `gradient_checkpointing`: False
|
286 |
+
- `gradient_checkpointing_kwargs`: None
|
287 |
+
- `include_inputs_for_metrics`: False
|
288 |
+
- `eval_do_concat_batches`: True
|
289 |
+
- `fp16_backend`: auto
|
290 |
+
- `push_to_hub_model_id`: None
|
291 |
+
- `push_to_hub_organization`: None
|
292 |
+
- `mp_parameters`:
|
293 |
+
- `auto_find_batch_size`: False
|
294 |
+
- `full_determinism`: False
|
295 |
+
- `torchdynamo`: None
|
296 |
+
- `ray_scope`: last
|
297 |
+
- `ddp_timeout`: 1800
|
298 |
+
- `torch_compile`: False
|
299 |
+
- `torch_compile_backend`: None
|
300 |
+
- `torch_compile_mode`: None
|
301 |
+
- `dispatch_batches`: None
|
302 |
+
- `split_batches`: None
|
303 |
+
- `include_tokens_per_second`: False
|
304 |
+
- `include_num_input_tokens_seen`: False
|
305 |
+
- `neftune_noise_alpha`: None
|
306 |
+
- `optim_target_modules`: None
|
307 |
+
- `batch_eval_metrics`: False
|
308 |
+
- `eval_on_start`: False
|
309 |
+
- `batch_sampler`: no_duplicates
|
310 |
+
- `multi_dataset_batch_sampler`: proportional
|
311 |
+
|
312 |
+
</details>
|
313 |
+
|
314 |
+
### Training Logs
|
315 |
+
<details><summary>Click to expand</summary>
|
316 |
+
|
317 |
+
| Epoch | Step | Training Loss |
|
318 |
+
|:------:|:-----:|:-------------:|
|
319 |
+
| 0.0533 | 100 | 12.0379 |
|
320 |
+
| 0.1067 | 200 | 9.2042 |
|
321 |
+
| 0.16 | 300 | 8.6521 |
|
322 |
+
| 0.2133 | 400 | 8.5353 |
|
323 |
+
| 0.2667 | 500 | 8.4472 |
|
324 |
+
| 0.32 | 600 | 8.4105 |
|
325 |
+
| 0.3733 | 700 | 8.3927 |
|
326 |
+
| 0.4267 | 800 | 8.3553 |
|
327 |
+
| 0.48 | 900 | 8.3326 |
|
328 |
+
| 0.5333 | 1000 | 8.3168 |
|
329 |
+
| 0.5867 | 1100 | 8.2941 |
|
330 |
+
| 0.64 | 1200 | 6.0021 |
|
331 |
+
| 0.6933 | 1300 | 5.3802 |
|
332 |
+
| 0.7467 | 1400 | 5.3282 |
|
333 |
+
| 0.8 | 1500 | 5.2365 |
|
334 |
+
| 0.8533 | 1600 | 5.0198 |
|
335 |
+
| 0.9067 | 1700 | 4.899 |
|
336 |
+
| 0.96 | 1800 | 4.8887 |
|
337 |
+
| 1.0133 | 1900 | 4.7603 |
|
338 |
+
| 1.0667 | 2000 | 4.6292 |
|
339 |
+
| 1.12 | 2100 | 4.4811 |
|
340 |
+
| 1.1733 | 2200 | 4.2841 |
|
341 |
+
| 1.2267 | 2300 | 4.2251 |
|
342 |
+
| 1.28 | 2400 | 4.0261 |
|
343 |
+
| 1.3333 | 2500 | 3.8628 |
|
344 |
+
| 1.3867 | 2600 | 3.8404 |
|
345 |
+
| 1.44 | 2700 | 3.6471 |
|
346 |
+
| 1.4933 | 2800 | 3.6673 |
|
347 |
+
| 1.5467 | 2900 | 3.5626 |
|
348 |
+
| 1.6 | 3000 | 3.5391 |
|
349 |
+
| 1.6533 | 3100 | 3.5629 |
|
350 |
+
| 1.7067 | 3200 | 3.4787 |
|
351 |
+
| 1.76 | 3300 | 3.4401 |
|
352 |
+
| 1.8133 | 3400 | 3.491 |
|
353 |
+
| 1.8667 | 3500 | 3.3358 |
|
354 |
+
| 1.92 | 3600 | 3.3555 |
|
355 |
+
| 1.9733 | 3700 | 3.161 |
|
356 |
+
| 2.0267 | 3800 | 3.1708 |
|
357 |
+
| 2.08 | 3900 | 3.1678 |
|
358 |
+
| 2.1333 | 4000 | 3.1348 |
|
359 |
+
| 2.1867 | 4100 | 2.9159 |
|
360 |
+
| 2.24 | 4200 | 2.8359 |
|
361 |
+
| 2.2933 | 4300 | 2.8359 |
|
362 |
+
| 2.3467 | 4400 | 2.796 |
|
363 |
+
| 2.4 | 4500 | 2.8483 |
|
364 |
+
| 2.4533 | 4600 | 2.7774 |
|
365 |
+
| 2.5067 | 4700 | 2.7766 |
|
366 |
+
| 2.56 | 4800 | 2.7185 |
|
367 |
+
| 2.6133 | 4900 | 2.778 |
|
368 |
+
| 2.6667 | 5000 | 2.7114 |
|
369 |
+
| 2.72 | 5100 | 2.6623 |
|
370 |
+
| 2.7733 | 5200 | 2.5093 |
|
371 |
+
| 2.8267 | 5300 | 2.4835 |
|
372 |
+
| 2.88 | 5400 | 2.2851 |
|
373 |
+
| 2.9333 | 5500 | 2.1488 |
|
374 |
+
| 2.9867 | 5600 | 2.2175 |
|
375 |
+
| 3.04 | 5700 | 2.0813 |
|
376 |
+
| 3.0933 | 5800 | 2.1489 |
|
377 |
+
| 3.1467 | 5900 | 2.1337 |
|
378 |
+
| 3.2 | 6000 | 2.2258 |
|
379 |
+
| 3.2533 | 6100 | 2.1601 |
|
380 |
+
| 3.3067 | 6200 | 1.9266 |
|
381 |
+
| 3.36 | 6300 | 1.8427 |
|
382 |
+
| 3.4133 | 6400 | 1.8434 |
|
383 |
+
| 3.4667 | 6500 | 1.917 |
|
384 |
+
| 3.52 | 6600 | 1.8204 |
|
385 |
+
| 3.5733 | 6700 | 2.0209 |
|
386 |
+
| 3.6267 | 6800 | 1.7852 |
|
387 |
+
| 3.68 | 6900 | 1.9566 |
|
388 |
+
| 3.7333 | 7000 | 1.852 |
|
389 |
+
| 3.7867 | 7100 | 1.8562 |
|
390 |
+
| 3.84 | 7200 | 1.7595 |
|
391 |
+
| 3.8933 | 7300 | 1.4295 |
|
392 |
+
| 3.9467 | 7400 | 1.2669 |
|
393 |
+
| 4.0 | 7500 | 1.2029 |
|
394 |
+
| 4.0533 | 7600 | 1.3074 |
|
395 |
+
| 4.1067 | 7700 | 1.435 |
|
396 |
+
| 4.16 | 7800 | 1.5712 |
|
397 |
+
| 4.2133 | 7900 | 1.2366 |
|
398 |
+
| 4.2667 | 8000 | 1.526 |
|
399 |
+
| 4.32 | 8100 | 1.2565 |
|
400 |
+
| 4.3733 | 8200 | 1.4546 |
|
401 |
+
| 4.4267 | 8300 | 1.374 |
|
402 |
+
| 4.48 | 8400 | 1.3387 |
|
403 |
+
| 4.5333 | 8500 | 1.3776 |
|
404 |
+
| 4.5867 | 8600 | 1.3984 |
|
405 |
+
| 4.64 | 8700 | 1.3577 |
|
406 |
+
| 4.6933 | 8800 | 1.2393 |
|
407 |
+
| 4.7467 | 8900 | 1.4125 |
|
408 |
+
| 4.8 | 9000 | 1.6127 |
|
409 |
+
| 4.8533 | 9100 | 1.6897 |
|
410 |
+
| 4.9067 | 9200 | 1.1217 |
|
411 |
+
| 4.96 | 9300 | 1.406 |
|
412 |
+
| 5.0133 | 9400 | 1.4641 |
|
413 |
+
| 5.0667 | 9500 | 1.48 |
|
414 |
+
| 5.12 | 9600 | 1.3367 |
|
415 |
+
| 5.1733 | 9700 | 1.4681 |
|
416 |
+
| 5.2267 | 9800 | 1.4628 |
|
417 |
+
| 5.28 | 9900 | 1.32 |
|
418 |
+
| 5.3333 | 10000 | 1.448 |
|
419 |
+
| 5.3867 | 10100 | 1.2516 |
|
420 |
+
| 5.44 | 10200 | 1.4421 |
|
421 |
+
| 5.4933 | 10300 | 1.2542 |
|
422 |
+
| 5.5467 | 10400 | 1.4545 |
|
423 |
+
| 5.6 | 10500 | 1.1441 |
|
424 |
+
| 5.6533 | 10600 | 1.251 |
|
425 |
+
| 5.7067 | 10700 | 1.3396 |
|
426 |
+
| 5.76 | 10800 | 1.0305 |
|
427 |
+
| 5.8133 | 10900 | 1.0155 |
|
428 |
+
| 5.8667 | 11000 | 0.9871 |
|
429 |
+
| 5.92 | 11100 | 1.074 |
|
430 |
+
| 5.9733 | 11200 | 0.4534 |
|
431 |
+
| 6.0267 | 11300 | 0.1965 |
|
432 |
+
| 6.08 | 11400 | 0.1822 |
|
433 |
+
| 6.1333 | 11500 | 0.2101 |
|
434 |
+
| 6.1867 | 11600 | 0.2326 |
|
435 |
+
| 6.24 | 11700 | 0.4126 |
|
436 |
+
| 6.2933 | 11800 | 0.4871 |
|
437 |
+
| 6.3467 | 11900 | 0.2012 |
|
438 |
+
| 6.4 | 12000 | 0.2113 |
|
439 |
+
| 6.4533 | 12100 | 0.1788 |
|
440 |
+
| 6.5067 | 12200 | 0.2271 |
|
441 |
+
| 6.56 | 12300 | 0.1685 |
|
442 |
+
| 6.6133 | 12400 | 0.3347 |
|
443 |
+
| 6.6667 | 12500 | 0.123 |
|
444 |
+
| 6.72 | 12600 | 0.155 |
|
445 |
+
| 6.7733 | 12700 | 0.2476 |
|
446 |
+
| 6.8267 | 12800 | 0.1926 |
|
447 |
+
| 6.88 | 12900 | 0.1394 |
|
448 |
+
| 6.9333 | 13000 | 0.1683 |
|
449 |
+
| 6.9867 | 13100 | 0.2484 |
|
450 |
+
| 7.04 | 13200 | 0.1338 |
|
451 |
+
| 7.0933 | 13300 | 0.1568 |
|
452 |
+
| 7.1467 | 13400 | 0.1206 |
|
453 |
+
| 7.2 | 13500 | 0.1683 |
|
454 |
+
| 7.2533 | 13600 | 0.1831 |
|
455 |
+
| 7.3067 | 13700 | 0.3077 |
|
456 |
+
| 7.36 | 13800 | 0.3533 |
|
457 |
+
| 7.4133 | 13900 | 0.1165 |
|
458 |
+
| 7.4667 | 14000 | 0.2128 |
|
459 |
+
| 7.52 | 14100 | 0.236 |
|
460 |
+
| 7.5733 | 14200 | 0.3616 |
|
461 |
+
| 7.6267 | 14300 | 0.2989 |
|
462 |
+
| 7.68 | 14400 | 0.2416 |
|
463 |
+
| 7.7333 | 14500 | 0.2105 |
|
464 |
+
| 7.7867 | 14600 | 0.1575 |
|
465 |
+
| 7.84 | 14700 | 0.224 |
|
466 |
+
| 7.8933 | 14800 | 0.1593 |
|
467 |
+
| 7.9467 | 14900 | 0.1293 |
|
468 |
+
| 8.0 | 15000 | 0.0985 |
|
469 |
+
|
470 |
+
</details>
|
471 |
+
|
472 |
+
### Framework Versions
|
473 |
+
- Python: 3.10.12
|
474 |
+
- Sentence Transformers: 3.0.1
|
475 |
+
- Transformers: 4.42.4
|
476 |
+
- PyTorch: 2.3.1+cu121
|
477 |
+
- Accelerate: 0.33.0
|
478 |
+
- Datasets: 2.20.0
|
479 |
+
- Tokenizers: 0.19.1
|
480 |
+
|
481 |
+
## Citation
|
482 |
+
|
483 |
+
### BibTeX
|
484 |
+
|
485 |
+
#### Sentence Transformers
|
486 |
+
```bibtex
|
487 |
+
@inproceedings{reimers-2019-sentence-bert,
|
488 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
489 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
490 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
491 |
+
month = "11",
|
492 |
+
year = "2019",
|
493 |
+
publisher = "Association for Computational Linguistics",
|
494 |
+
url = "https://arxiv.org/abs/1908.10084",
|
495 |
+
}
|
496 |
+
```
|
497 |
+
|
498 |
+
#### CoSENTLoss
|
499 |
+
```bibtex
|
500 |
+
@online{kexuefm-8847,
|
501 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
502 |
+
author={Su Jianlin},
|
503 |
+
year={2022},
|
504 |
+
month={Jan},
|
505 |
+
url={https://kexue.fm/archives/8847},
|
506 |
+
}
|
507 |
+
```
|
508 |
+
|
509 |
+
<!--
|
510 |
+
## Glossary
|
511 |
+
|
512 |
+
*Clearly define terms in order to be accessible across audiences.*
|
513 |
+
-->
|
514 |
+
|
515 |
+
<!--
|
516 |
+
## Model Card Authors
|
517 |
+
|
518 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
519 |
+
-->
|
520 |
+
|
521 |
+
<!--
|
522 |
+
## Model Card Contact
|
523 |
+
|
524 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
525 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "models/sft-sql-embedding",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.41.2",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.3.0+cpu"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:862b852885ed728c86e8eb1c986309d9a6abfb4901fc9873c0e60c32d5cc8b0d
|
3 |
+
size 437967672
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 384,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[UNK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30526": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "<s>",
|
53 |
+
"clean_up_tokenization_spaces": true,
|
54 |
+
"cls_token": "<s>",
|
55 |
+
"do_lower_case": true,
|
56 |
+
"eos_token": "</s>",
|
57 |
+
"mask_token": "<mask>",
|
58 |
+
"max_length": 128,
|
59 |
+
"model_max_length": 384,
|
60 |
+
"pad_to_multiple_of": null,
|
61 |
+
"pad_token": "<pad>",
|
62 |
+
"pad_token_type_id": 0,
|
63 |
+
"padding_side": "right",
|
64 |
+
"sep_token": "</s>",
|
65 |
+
"stride": 0,
|
66 |
+
"strip_accents": null,
|
67 |
+
"tokenize_chinese_chars": true,
|
68 |
+
"tokenizer_class": "MPNetTokenizer",
|
69 |
+
"truncation_side": "right",
|
70 |
+
"truncation_strategy": "longest_first",
|
71 |
+
"unk_token": "[UNK]"
|
72 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|