File size: 3,381 Bytes
92c0e85 4fb8958 92c0e85 afeddc0 92c0e85 afeddc0 4fb8958 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
---
license: openrail
language:
- zh
pipeline_tag: text-generation
library_name: transformers
---
## Original model card
Buy me a coffee if you like this project ;)
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
#### Description
GGML Format model files for [This project](https://huggingface.co/hiyouga/baichuan-7b-sft).
### inference
```python
import ctransformers
from ctransformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file,
gpu_layers=32, model_type="llama")
manual_input: str = "Tell me about your last dream, please."
llm(manual_input,
max_new_tokens=256,
temperature=0.9,
top_p= 0.7)
```
# Original model card
A bilingual instruction-tuned LoRA model of https://huggingface.co/baichuan-inc/baichuan-7B
- Instruction-following datasets used: alpaca, alpaca-zh, codealpaca
- Training framework: https://github.com/hiyouga/LLaMA-Efficient-Tuning
Please follow the [baichuan-7B License](https://huggingface.co/baichuan-inc/baichuan-7B/resolve/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) to use this model.
Usage:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
tokenizer = AutoTokenizer.from_pretrained("hiyouga/baichuan-7b-sft", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("hiyouga/baichuan-7b-sft", trust_remote_code=True).cuda()
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
query = "晚上睡不着怎么办"
template = (
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
"Human: {}\nAssistant: "
)
inputs = tokenizer([template.format(query)], return_tensors="pt")
inputs = inputs.to("cuda")
generate_ids = model.generate(**inputs, max_new_tokens=256, streamer=streamer)
```
You could also alternatively launch a CLI demo by using the script in https://github.com/hiyouga/LLaMA-Efficient-Tuning
```bash
python src/cli_demo.py --template default --model_name_or_path hiyouga/baichuan-7b-sft
```
---
You could reproduce our results with the following scripts using [LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning):
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path baichuan-inc/baichuan-7B \
--do_train \
--dataset alpaca_gpt4_en,alpaca_gpt4_zh,codealpaca \
--template default \
--finetuning_type lora \
--lora_rank 16 \
--lora_target W_pack,o_proj,gate_proj,down_proj,up_proj \
--output_dir baichuan_lora \
--overwrite_cache \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 8 \
--gradient_accumulation_steps 8 \
--preprocessing_num_workers 16 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--learning_rate 5e-5 \
--max_grad_norm 0.5 \
--num_train_epochs 2.0 \
--dev_ratio 0.01 \
--evaluation_strategy steps \
--load_best_model_at_end \
--plot_loss \
--fp16
```
Loss curve on training set:
![train](assets/training_loss.svg)
Loss curve on evaluation set:
![eval](assets/eval_loss.svg) |