--- license: openrail language: - zh pipeline_tag: text-generation library_name: transformers --- ## Original model card Buy me a coffee if you like this project ;) #### Description GGML Format model files for [This project](https://huggingface.co/hiyouga/baichuan-7b-sft). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card A bilingual instruction-tuned LoRA model of https://huggingface.co/baichuan-inc/baichuan-7B - Instruction-following datasets used: alpaca, alpaca-zh, codealpaca - Training framework: https://github.com/hiyouga/LLaMA-Efficient-Tuning Please follow the [baichuan-7B License](https://huggingface.co/baichuan-inc/baichuan-7B/resolve/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) to use this model. Usage: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer tokenizer = AutoTokenizer.from_pretrained("hiyouga/baichuan-7b-sft", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("hiyouga/baichuan-7b-sft", trust_remote_code=True).cuda() streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) query = "晚上睡不着怎么办" template = ( "A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions.\n" "Human: {}\nAssistant: " ) inputs = tokenizer([template.format(query)], return_tensors="pt") inputs = inputs.to("cuda") generate_ids = model.generate(**inputs, max_new_tokens=256, streamer=streamer) ``` You could also alternatively launch a CLI demo by using the script in https://github.com/hiyouga/LLaMA-Efficient-Tuning ```bash python src/cli_demo.py --template default --model_name_or_path hiyouga/baichuan-7b-sft ``` --- You could reproduce our results with the following scripts using [LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning): ```bash CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ --stage sft \ --model_name_or_path baichuan-inc/baichuan-7B \ --do_train \ --dataset alpaca_gpt4_en,alpaca_gpt4_zh,codealpaca \ --template default \ --finetuning_type lora \ --lora_rank 16 \ --lora_target W_pack,o_proj,gate_proj,down_proj,up_proj \ --output_dir baichuan_lora \ --overwrite_cache \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 8 \ --gradient_accumulation_steps 8 \ --preprocessing_num_workers 16 \ --lr_scheduler_type cosine \ --logging_steps 10 \ --save_steps 100 \ --eval_steps 100 \ --learning_rate 5e-5 \ --max_grad_norm 0.5 \ --num_train_epochs 2.0 \ --dev_ratio 0.01 \ --evaluation_strategy steps \ --load_best_model_at_end \ --plot_loss \ --fp16 ``` Loss curve on training set: ![train](assets/training_loss.svg) Loss curve on evaluation set: ![eval](assets/eval_loss.svg)