--- base_model: nvidia/mit-b0 license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-SixrayKnife8-19-2024 results: [] --- # segformer-b0-finetuned-segments-SixrayKnife8-19-2024 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the saad7489/SixraygunTest dataset. It achieves the following results on the evaluation set: - Loss: 0.6355 - Mean Iou: 0.5008 - Mean Accuracy: 0.7954 - Overall Accuracy: 0.7906 - Accuracy Bkg: nan - Accuracy Knife: 0.7186 - Accuracy Gun: 0.8722 - Iou Bkg: 0.0 - Iou Knife: 0.6915 - Iou Gun: 0.8110 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bkg | Accuracy Knife | Accuracy Gun | Iou Bkg | Iou Knife | Iou Gun | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:--------------:|:------------:|:-------:|:---------:|:-------:| | 0.7945 | 1.4286 | 20 | 0.7932 | 0.5023 | 0.8446 | 0.8389 | nan | 0.7531 | 0.9361 | 0.0 | 0.7186 | 0.7883 | | 0.7385 | 2.8571 | 40 | 0.7324 | 0.5150 | 0.8445 | 0.8404 | nan | 0.7787 | 0.9103 | 0.0 | 0.7375 | 0.8074 | | 0.7139 | 4.2857 | 60 | 0.7152 | 0.5033 | 0.8256 | 0.8200 | nan | 0.7358 | 0.9155 | 0.0 | 0.7072 | 0.8027 | | 0.7405 | 5.7143 | 80 | 0.6747 | 0.4953 | 0.7972 | 0.7917 | nan | 0.7078 | 0.8866 | 0.0 | 0.6785 | 0.8075 | | 0.6666 | 7.1429 | 100 | 0.6442 | 0.4937 | 0.7919 | 0.7860 | nan | 0.6964 | 0.8874 | 0.0 | 0.6723 | 0.8089 | | 0.6357 | 8.5714 | 120 | 0.6210 | 0.4957 | 0.7874 | 0.7823 | nan | 0.7059 | 0.8688 | 0.0 | 0.6794 | 0.8076 | | 0.6548 | 10.0 | 140 | 0.6355 | 0.5008 | 0.7954 | 0.7906 | nan | 0.7186 | 0.8722 | 0.0 | 0.6915 | 0.8110 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1