--- license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-SixrayKnife8-19-2024 results: [] --- # segformer-b0-finetuned-segments-SixrayKnife8-19-2024 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the saad7489/SixraygunTest dataset. It achieves the following results on the evaluation set: - Loss: 0.8400 - Mean Iou: 0.5119 - Mean Accuracy: 0.8558 - Overall Accuracy: 0.8558 - Accuracy Object1: nan - Accuracy Object2: 0.8556 - Accuracy Object3: 0.8561 - Iou Object1: 0.0 - Iou Object2: 0.7670 - Iou Object3: 0.7687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Object1 | Accuracy Object2 | Accuracy Object3 | Iou Object1 | Iou Object2 | Iou Object3 | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:----------------:|:----------------:|:-----------:|:-----------:|:-----------:| | 1.0078 | 1.4286 | 20 | 1.0664 | 0.3704 | 0.7172 | 0.7115 | nan | 0.6051 | 0.8292 | 0.0 | 0.5243 | 0.5870 | | 0.9646 | 2.8571 | 40 | 0.9611 | 0.4414 | 0.7944 | 0.7925 | nan | 0.7559 | 0.8330 | 0.0 | 0.6574 | 0.6668 | | 0.9287 | 4.2857 | 60 | 0.8994 | 0.4776 | 0.8308 | 0.8297 | nan | 0.8085 | 0.8532 | 0.0 | 0.7157 | 0.7172 | | 0.873 | 5.7143 | 80 | 0.8656 | 0.4944 | 0.8451 | 0.8440 | nan | 0.8231 | 0.8671 | 0.0 | 0.7390 | 0.7442 | | 0.8578 | 7.1429 | 100 | 0.8394 | 0.5069 | 0.8534 | 0.8532 | nan | 0.8493 | 0.8575 | 0.0 | 0.7602 | 0.7605 | | 0.8201 | 8.5714 | 120 | 0.8329 | 0.5102 | 0.8545 | 0.8546 | nan | 0.8558 | 0.8531 | 0.0 | 0.7648 | 0.7657 | | 0.8415 | 10.0 | 140 | 0.8400 | 0.5119 | 0.8558 | 0.8558 | nan | 0.8556 | 0.8561 | 0.0 | 0.7670 | 0.7687 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1