--- base_model: nvidia/mit-b0 license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-SixrayKnife8-19-2024 results: [] --- # segformer-b0-finetuned-segments-SixrayKnife8-19-2024 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the saad7489/SixraygunTest dataset. It achieves the following results on the evaluation set: - Loss: 0.7621 - Mean Iou: 0.4717 - Mean Accuracy: 0.8197 - Overall Accuracy: 0.8114 - Accuracy Object1: nan - Accuracy Object2: 0.6867 - Accuracy Object3: 0.9527 - Iou Object1: 0.0 - Iou Object2: 0.6649 - Iou Object3: 0.7502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Object1 | Accuracy Object2 | Accuracy Object3 | Iou Object1 | Iou Object2 | Iou Object3 | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:----------------:|:----------------:|:-----------:|:-----------:|:-----------:| | 0.9327 | 1.4286 | 20 | 1.0058 | 0.3119 | 0.6386 | 0.6235 | nan | 0.3968 | 0.8803 | 0.0 | 0.3621 | 0.5736 | | 0.9028 | 2.8571 | 40 | 0.8719 | 0.3792 | 0.7295 | 0.7148 | nan | 0.4933 | 0.9656 | 0.0 | 0.4796 | 0.6580 | | 0.8514 | 4.2857 | 60 | 0.8211 | 0.4199 | 0.7734 | 0.7615 | nan | 0.5833 | 0.9635 | 0.0 | 0.5662 | 0.6936 | | 0.8251 | 5.7143 | 80 | 0.7680 | 0.4585 | 0.8077 | 0.7986 | nan | 0.6613 | 0.9541 | 0.0 | 0.6389 | 0.7364 | | 0.8048 | 7.1429 | 100 | 0.7591 | 0.4643 | 0.8141 | 0.8053 | nan | 0.6717 | 0.9565 | 0.0 | 0.6514 | 0.7414 | | 0.7667 | 8.5714 | 120 | 0.7591 | 0.4751 | 0.8230 | 0.8153 | nan | 0.6997 | 0.9462 | 0.0 | 0.6737 | 0.7517 | | 0.7748 | 10.0 | 140 | 0.7621 | 0.4717 | 0.8197 | 0.8114 | nan | 0.6867 | 0.9527 | 0.0 | 0.6649 | 0.7502 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1