File size: 2,225 Bytes
427cc23
3a3fc8e
 
 
 
 
 
 
 
 
427cc23
 
3a3fc8e
 
427cc23
3a3fc8e
427cc23
3a3fc8e
 
 
 
 
 
 
 
 
 
 
 
427cc23
3a3fc8e
427cc23
3a3fc8e
427cc23
3a3fc8e
427cc23
3a3fc8e
427cc23
3a3fc8e
427cc23
3a3fc8e
427cc23
3a3fc8e
427cc23
3a3fc8e
427cc23
3a3fc8e
 
 
 
 
 
 
 
427cc23
3a3fc8e
427cc23
3a3fc8e
 
 
 
 
427cc23
 
3a3fc8e
427cc23
3a3fc8e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformerSAAD
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformerSAAD

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the saad7489/SixGUN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7611
- Mean Iou: 0.5823
- Mean Accuracy: 0.8994
- Overall Accuracy: 0.9474
- Accuracy Bkg: 0.9505
- Accuracy Knife: 0.8767
- Accuracy Gun: 0.8711
- Iou Bkg: 0.9471
- Iou Knife: 0.4452
- Iou Gun: 0.3544

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bkg | Accuracy Knife | Accuracy Gun | Iou Bkg | Iou Knife | Iou Gun |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:--------------:|:------------:|:-------:|:---------:|:-------:|
| 0.9115        | 10.0  | 20   | 1.0252          | 0.5076   | 0.9065        | 0.9181           | 0.9188       | 0.8625         | 0.9382       | 0.9176  | 0.3218    | 0.2833  |
| 0.766         | 20.0  | 40   | 0.8278          | 0.5811   | 0.8914        | 0.9486           | 0.9523       | 0.8691         | 0.8527       | 0.9485  | 0.4288    | 0.3661  |
| 0.7862        | 30.0  | 60   | 0.7611          | 0.5823   | 0.8994        | 0.9474           | 0.9505       | 0.8767         | 0.8711       | 0.9471  | 0.4452    | 0.3544  |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1