File size: 2,052 Bytes
55d9585 da93e86 55d9585 da93e86 55d9585 da93e86 55d9585 da93e86 55d9585 da93e86 55d9585 da93e86 55d9585 da93e86 55d9585 da93e86 55d9585 da93e86 55d9585 da93e86 55d9585 da93e86 55d9585 da93e86 55d9585 da93e86 55d9585 da93e86 55d9585 da93e86 55d9585 da93e86 55d9585 da93e86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformerSAADNew
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformerSAADNew
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the saad7489/SixGUNNew dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6994
- Mean Iou: 0.4393
- Mean Accuracy: 0.9081
- Overall Accuracy: 0.9708
- Accuracy Bkg: 0.9732
- Accuracy Gun: nan
- Accuracy Knife: 0.8431
- Iou Bkg: 0.9704
- Iou Gun: 0.0
- Iou Knife: 0.3476
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 30
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bkg | Accuracy Gun | Accuracy Knife | Iou Bkg | Iou Gun | Iou Knife |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:------------:|:--------------:|:-------:|:-------:|:---------:|
| 0.8827 | 4.0 | 20 | 0.8654 | 0.4254 | 0.8976 | 0.9662 | 0.9688 | nan | 0.8264 | 0.9657 | 0.0 | 0.3106 |
| 0.7151 | 8.0 | 40 | 0.6994 | 0.4393 | 0.9081 | 0.9708 | 0.9732 | nan | 0.8431 | 0.9704 | 0.0 | 0.3476 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|