File size: 8,344 Bytes
333a54d
 
 
 
 
f7588be
 
333a54d
 
f7588be
 
333a54d
f7588be
c8ddabe
f7588be
 
c0107d1
 
 
 
 
 
 
 
 
f7588be
 
 
 
 
 
 
 
 
 
 
 
333a54d
 
 
 
 
 
 
 
 
 
 
 
 
 
f7588be
333a54d
 
 
 
c0107d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333a54d
 
 
 
 
 
 
f7588be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: verdict-classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# verdict-classifier

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2238
- F1 Macro: 0.8540
- F1 Misinformation: 0.9798
- F1 Factual: 0.9889
- F1 Other: 0.5934
- Prec Macro: 0.8348
- Prec Misinformation: 0.9860
- Prec Factual: 0.9889
- Prec Other: 0.5294

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 162525
- num_epochs: 1000

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1 Macro | F1 Misinformation | F1 Factual | F1 Other | Prec Macro | Prec Misinformation | Prec Factual | Prec Other |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------------:|:----------:|:--------:|:----------:|:-------------------:|:------------:|:----------:|
| 1.1109        | 0.1   | 2000  | 1.2166          | 0.0713   | 0.1497            | 0.0        | 0.0640   | 0.2451     | 0.7019              | 0.0          | 0.0334     |
| 0.9551        | 0.2   | 4000  | 0.7801          | 0.3611   | 0.8889            | 0.0        | 0.1943   | 0.3391     | 0.8915              | 0.0          | 0.1259     |
| 0.9275        | 0.3   | 6000  | 0.7712          | 0.3468   | 0.9123            | 0.0        | 0.1282   | 0.3304     | 0.9051              | 0.0          | 0.0862     |
| 0.8881        | 0.39  | 8000  | 0.5386          | 0.3940   | 0.9524            | 0.0        | 0.2297   | 0.3723     | 0.9748              | 0.0          | 0.1420     |
| 0.7851        | 0.49  | 10000 | 0.3298          | 0.6886   | 0.9626            | 0.7640     | 0.3393   | 0.6721     | 0.9798              | 0.7727       | 0.2639     |
| 0.639         | 0.59  | 12000 | 0.2156          | 0.7847   | 0.9633            | 0.9355     | 0.4554   | 0.7540     | 0.9787              | 0.9062       | 0.3770     |
| 0.5677        | 0.69  | 14000 | 0.1682          | 0.7877   | 0.9694            | 0.9667     | 0.4270   | 0.7763     | 0.9745              | 0.9667       | 0.3878     |
| 0.5218        | 0.79  | 16000 | 0.1475          | 0.8037   | 0.9692            | 0.9667     | 0.4752   | 0.7804     | 0.9812              | 0.9667       | 0.3934     |
| 0.4682        | 0.89  | 18000 | 0.1458          | 0.8097   | 0.9734            | 0.9667     | 0.4889   | 0.7953     | 0.9791              | 0.9667       | 0.44       |
| 0.4188        | 0.98  | 20000 | 0.1416          | 0.8370   | 0.9769            | 0.9724     | 0.5618   | 0.8199     | 0.9826              | 0.9670       | 0.5102     |
| 0.3735        | 1.08  | 22000 | 0.1624          | 0.8094   | 0.9698            | 0.9368     | 0.5217   | 0.7780     | 0.9823              | 0.89         | 0.4615     |
| 0.3242        | 1.18  | 24000 | 0.1648          | 0.8338   | 0.9769            | 0.9727     | 0.5517   | 0.8167     | 0.9826              | 0.9570       | 0.5106     |
| 0.2785        | 1.28  | 26000 | 0.1843          | 0.8261   | 0.9739            | 0.9780     | 0.5263   | 0.8018     | 0.9836              | 0.9674       | 0.4545     |
| 0.25          | 1.38  | 28000 | 0.1975          | 0.8344   | 0.9744            | 0.9834     | 0.5455   | 0.8072     | 0.9859              | 0.9780       | 0.4576     |
| 0.2176        | 1.48  | 30000 | 0.1849          | 0.8209   | 0.9691            | 0.9889     | 0.5047   | 0.7922     | 0.9846              | 0.9889       | 0.4030     |
| 0.1966        | 1.58  | 32000 | 0.2119          | 0.8194   | 0.9685            | 0.9944     | 0.4954   | 0.7920     | 0.9846              | 1.0          | 0.3913     |
| 0.1738        | 1.67  | 34000 | 0.2110          | 0.8352   | 0.9708            | 0.9944     | 0.5405   | 0.8035     | 0.9881              | 1.0          | 0.4225     |
| 0.1625        | 1.77  | 36000 | 0.2152          | 0.8165   | 0.9709            | 0.9834     | 0.4950   | 0.7905     | 0.9835              | 0.9780       | 0.4098     |
| 0.1522        | 1.87  | 38000 | 0.2300          | 0.8097   | 0.9697            | 0.9832     | 0.4762   | 0.7856     | 0.9835              | 0.9888       | 0.3846     |
| 0.145         | 1.97  | 40000 | 0.1955          | 0.8519   | 0.9774            | 0.9889     | 0.5895   | 0.8280     | 0.9860              | 0.9889       | 0.5091     |
| 0.1248        | 2.07  | 42000 | 0.2308          | 0.8149   | 0.9703            | 0.9889     | 0.4854   | 0.7897     | 0.9835              | 0.9889       | 0.3968     |
| 0.1186        | 2.17  | 44000 | 0.2368          | 0.8172   | 0.9733            | 0.9834     | 0.4948   | 0.7942     | 0.9836              | 0.9780       | 0.4211     |
| 0.1122        | 2.26  | 46000 | 0.2401          | 0.7968   | 0.9804            | 0.8957     | 0.5143   | 0.8001     | 0.9849              | 1.0          | 0.4154     |
| 0.1099        | 2.36  | 48000 | 0.2290          | 0.8119   | 0.9647            | 0.9834     | 0.4874   | 0.7777     | 0.9880              | 0.9780       | 0.3671     |
| 0.1093        | 2.46  | 50000 | 0.2256          | 0.8247   | 0.9745            | 0.9889     | 0.5106   | 0.8053     | 0.9825              | 0.9889       | 0.4444     |
| 0.1053        | 2.56  | 52000 | 0.2416          | 0.8456   | 0.9799            | 0.9889     | 0.5679   | 0.8434     | 0.9805              | 0.9889       | 0.5610     |
| 0.1049        | 2.66  | 54000 | 0.2850          | 0.7585   | 0.9740            | 0.8902     | 0.4112   | 0.7650     | 0.9802              | 0.9865       | 0.3284     |
| 0.098         | 2.76  | 56000 | 0.2828          | 0.8049   | 0.9642            | 0.9889     | 0.4615   | 0.7750     | 0.9856              | 0.9889       | 0.3506     |
| 0.0962        | 2.86  | 58000 | 0.2238          | 0.8540   | 0.9798            | 0.9889     | 0.5934   | 0.8348     | 0.9860              | 0.9889       | 0.5294     |
| 0.0975        | 2.95  | 60000 | 0.2494          | 0.8249   | 0.9715            | 0.9889     | 0.5143   | 0.7967     | 0.9858              | 0.9889       | 0.4154     |
| 0.0877        | 3.05  | 62000 | 0.2464          | 0.8274   | 0.9733            | 0.9889     | 0.5200   | 0.8023     | 0.9847              | 0.9889       | 0.4333     |
| 0.0848        | 3.15  | 64000 | 0.2338          | 0.8263   | 0.9740            | 0.9889     | 0.5161   | 0.8077     | 0.9814              | 0.9889       | 0.4528     |
| 0.0859        | 3.25  | 66000 | 0.2335          | 0.8365   | 0.9750            | 0.9889     | 0.5455   | 0.8108     | 0.9859              | 0.9889       | 0.4576     |
| 0.084         | 3.35  | 68000 | 0.2067          | 0.8343   | 0.9763            | 0.9889     | 0.5376   | 0.8148     | 0.9837              | 0.9889       | 0.4717     |
| 0.0837        | 3.45  | 70000 | 0.2516          | 0.8249   | 0.9746            | 0.9889     | 0.5111   | 0.8097     | 0.9803              | 0.9889       | 0.46       |
| 0.0809        | 3.54  | 72000 | 0.2948          | 0.8258   | 0.9728            | 0.9944     | 0.5102   | 0.8045     | 0.9824              | 1.0          | 0.4310     |
| 0.0833        | 3.64  | 74000 | 0.2457          | 0.8494   | 0.9744            | 0.9944     | 0.5794   | 0.8173     | 0.9893              | 1.0          | 0.4627     |
| 0.0796        | 3.74  | 76000 | 0.3188          | 0.8277   | 0.9733            | 0.9889     | 0.5208   | 0.8059     | 0.9825              | 0.9889       | 0.4464     |
| 0.0821        | 3.84  | 78000 | 0.2642          | 0.8343   | 0.9714            | 0.9944     | 0.5370   | 0.8045     | 0.9870              | 1.0          | 0.4265     |


### Framework versions

- Transformers 4.11.3
- Pytorch 1.9.0+cu102
- Datasets 1.9.0
- Tokenizers 0.10.2