File size: 8,825 Bytes
333a54d
 
5d851a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333a54d
 
 
5d851a5
 
 
 
 
 
a305d47
333a54d
 
5d851a5
333a54d
5d851a5
 
c0107d1
 
 
 
 
 
 
 
 
f7588be
333a54d
 
 
 
 
 
 
 
 
 
 
 
 
 
f7588be
333a54d
 
 
 
c0107d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333a54d
 
 
 
 
 
 
5d851a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
license: mit
language:
- am
- ar
- hy
- eu
- bn
- bs
- bg
- my
- hr
- ca
- cs
- da
- nl
- en
- et
- fi
- fr
- ka
- de
- el
- gu
- ht
- iw
- hi
- hu
- is
- in
- it
- ja
- kn
- km
- ko
- lo
- lv
- lt
- ml
- mr
- ne
- no
- or
- pa
- ps
- fa
- pl
- pt
- ro
- ru
- sr
- zh
- sd
- si
- sk
- sl
- es
- sv
- tl
- ta
- te
- th
- tr
- uk
- ur
- ug
- vi
- cy
tags:
- generated_from_trainer
model-index:
- name: verdict-classifier-en
  results:
  - task:
      type: text-classification
      name: Verdict Classification
widget:
- "本文已断章取义。"
---

# Multilingual Verdict Classifier

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on 2,500 deduplicated multilingual verdicts from [Google Fact Check Tools API](https://developers.google.com/fact-check/tools/api/reference/rest/v1alpha1/claims/search), translated into 65 languages with the [Google Cloud Translation API](https://cloud.google.com/translate/docs/reference/rest/).
It achieves the following results on the evaluation set, being 1,000 such verdicts, but here including duplicates to represent the true distribution:
- Loss: 0.2238
- F1 Macro: 0.8540
- F1 Misinformation: 0.9798
- F1 Factual: 0.9889
- F1 Other: 0.5934
- Prec Macro: 0.8348
- Prec Misinformation: 0.9860
- Prec Factual: 0.9889
- Prec Other: 0.5294


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 162525
- num_epochs: 1000

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1 Macro | F1 Misinformation | F1 Factual | F1 Other | Prec Macro | Prec Misinformation | Prec Factual | Prec Other |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------------:|:----------:|:--------:|:----------:|:-------------------:|:------------:|:----------:|
| 1.1109        | 0.1   | 2000  | 1.2166          | 0.0713   | 0.1497            | 0.0        | 0.0640   | 0.2451     | 0.7019              | 0.0          | 0.0334     |
| 0.9551        | 0.2   | 4000  | 0.7801          | 0.3611   | 0.8889            | 0.0        | 0.1943   | 0.3391     | 0.8915              | 0.0          | 0.1259     |
| 0.9275        | 0.3   | 6000  | 0.7712          | 0.3468   | 0.9123            | 0.0        | 0.1282   | 0.3304     | 0.9051              | 0.0          | 0.0862     |
| 0.8881        | 0.39  | 8000  | 0.5386          | 0.3940   | 0.9524            | 0.0        | 0.2297   | 0.3723     | 0.9748              | 0.0          | 0.1420     |
| 0.7851        | 0.49  | 10000 | 0.3298          | 0.6886   | 0.9626            | 0.7640     | 0.3393   | 0.6721     | 0.9798              | 0.7727       | 0.2639     |
| 0.639         | 0.59  | 12000 | 0.2156          | 0.7847   | 0.9633            | 0.9355     | 0.4554   | 0.7540     | 0.9787              | 0.9062       | 0.3770     |
| 0.5677        | 0.69  | 14000 | 0.1682          | 0.7877   | 0.9694            | 0.9667     | 0.4270   | 0.7763     | 0.9745              | 0.9667       | 0.3878     |
| 0.5218        | 0.79  | 16000 | 0.1475          | 0.8037   | 0.9692            | 0.9667     | 0.4752   | 0.7804     | 0.9812              | 0.9667       | 0.3934     |
| 0.4682        | 0.89  | 18000 | 0.1458          | 0.8097   | 0.9734            | 0.9667     | 0.4889   | 0.7953     | 0.9791              | 0.9667       | 0.44       |
| 0.4188        | 0.98  | 20000 | 0.1416          | 0.8370   | 0.9769            | 0.9724     | 0.5618   | 0.8199     | 0.9826              | 0.9670       | 0.5102     |
| 0.3735        | 1.08  | 22000 | 0.1624          | 0.8094   | 0.9698            | 0.9368     | 0.5217   | 0.7780     | 0.9823              | 0.89         | 0.4615     |
| 0.3242        | 1.18  | 24000 | 0.1648          | 0.8338   | 0.9769            | 0.9727     | 0.5517   | 0.8167     | 0.9826              | 0.9570       | 0.5106     |
| 0.2785        | 1.28  | 26000 | 0.1843          | 0.8261   | 0.9739            | 0.9780     | 0.5263   | 0.8018     | 0.9836              | 0.9674       | 0.4545     |
| 0.25          | 1.38  | 28000 | 0.1975          | 0.8344   | 0.9744            | 0.9834     | 0.5455   | 0.8072     | 0.9859              | 0.9780       | 0.4576     |
| 0.2176        | 1.48  | 30000 | 0.1849          | 0.8209   | 0.9691            | 0.9889     | 0.5047   | 0.7922     | 0.9846              | 0.9889       | 0.4030     |
| 0.1966        | 1.58  | 32000 | 0.2119          | 0.8194   | 0.9685            | 0.9944     | 0.4954   | 0.7920     | 0.9846              | 1.0          | 0.3913     |
| 0.1738        | 1.67  | 34000 | 0.2110          | 0.8352   | 0.9708            | 0.9944     | 0.5405   | 0.8035     | 0.9881              | 1.0          | 0.4225     |
| 0.1625        | 1.77  | 36000 | 0.2152          | 0.8165   | 0.9709            | 0.9834     | 0.4950   | 0.7905     | 0.9835              | 0.9780       | 0.4098     |
| 0.1522        | 1.87  | 38000 | 0.2300          | 0.8097   | 0.9697            | 0.9832     | 0.4762   | 0.7856     | 0.9835              | 0.9888       | 0.3846     |
| 0.145         | 1.97  | 40000 | 0.1955          | 0.8519   | 0.9774            | 0.9889     | 0.5895   | 0.8280     | 0.9860              | 0.9889       | 0.5091     |
| 0.1248        | 2.07  | 42000 | 0.2308          | 0.8149   | 0.9703            | 0.9889     | 0.4854   | 0.7897     | 0.9835              | 0.9889       | 0.3968     |
| 0.1186        | 2.17  | 44000 | 0.2368          | 0.8172   | 0.9733            | 0.9834     | 0.4948   | 0.7942     | 0.9836              | 0.9780       | 0.4211     |
| 0.1122        | 2.26  | 46000 | 0.2401          | 0.7968   | 0.9804            | 0.8957     | 0.5143   | 0.8001     | 0.9849              | 1.0          | 0.4154     |
| 0.1099        | 2.36  | 48000 | 0.2290          | 0.8119   | 0.9647            | 0.9834     | 0.4874   | 0.7777     | 0.9880              | 0.9780       | 0.3671     |
| 0.1093        | 2.46  | 50000 | 0.2256          | 0.8247   | 0.9745            | 0.9889     | 0.5106   | 0.8053     | 0.9825              | 0.9889       | 0.4444     |
| 0.1053        | 2.56  | 52000 | 0.2416          | 0.8456   | 0.9799            | 0.9889     | 0.5679   | 0.8434     | 0.9805              | 0.9889       | 0.5610     |
| 0.1049        | 2.66  | 54000 | 0.2850          | 0.7585   | 0.9740            | 0.8902     | 0.4112   | 0.7650     | 0.9802              | 0.9865       | 0.3284     |
| 0.098         | 2.76  | 56000 | 0.2828          | 0.8049   | 0.9642            | 0.9889     | 0.4615   | 0.7750     | 0.9856              | 0.9889       | 0.3506     |
| 0.0962        | 2.86  | 58000 | 0.2238          | 0.8540   | 0.9798            | 0.9889     | 0.5934   | 0.8348     | 0.9860              | 0.9889       | 0.5294     |
| 0.0975        | 2.95  | 60000 | 0.2494          | 0.8249   | 0.9715            | 0.9889     | 0.5143   | 0.7967     | 0.9858              | 0.9889       | 0.4154     |
| 0.0877        | 3.05  | 62000 | 0.2464          | 0.8274   | 0.9733            | 0.9889     | 0.5200   | 0.8023     | 0.9847              | 0.9889       | 0.4333     |
| 0.0848        | 3.15  | 64000 | 0.2338          | 0.8263   | 0.9740            | 0.9889     | 0.5161   | 0.8077     | 0.9814              | 0.9889       | 0.4528     |
| 0.0859        | 3.25  | 66000 | 0.2335          | 0.8365   | 0.9750            | 0.9889     | 0.5455   | 0.8108     | 0.9859              | 0.9889       | 0.4576     |
| 0.084         | 3.35  | 68000 | 0.2067          | 0.8343   | 0.9763            | 0.9889     | 0.5376   | 0.8148     | 0.9837              | 0.9889       | 0.4717     |
| 0.0837        | 3.45  | 70000 | 0.2516          | 0.8249   | 0.9746            | 0.9889     | 0.5111   | 0.8097     | 0.9803              | 0.9889       | 0.46       |
| 0.0809        | 3.54  | 72000 | 0.2948          | 0.8258   | 0.9728            | 0.9944     | 0.5102   | 0.8045     | 0.9824              | 1.0          | 0.4310     |
| 0.0833        | 3.64  | 74000 | 0.2457          | 0.8494   | 0.9744            | 0.9944     | 0.5794   | 0.8173     | 0.9893              | 1.0          | 0.4627     |
| 0.0796        | 3.74  | 76000 | 0.3188          | 0.8277   | 0.9733            | 0.9889     | 0.5208   | 0.8059     | 0.9825              | 0.9889       | 0.4464     |
| 0.0821        | 3.84  | 78000 | 0.2642          | 0.8343   | 0.9714            | 0.9944     | 0.5370   | 0.8045     | 0.9870              | 1.0          | 0.4265     |


### Framework versions

- Transformers 4.11.3
- Pytorch 1.9.0+cu102
- Datasets 1.9.0
- Tokenizers 0.10.2