sabaridsnfuji commited on
Commit
29954ec
·
verified ·
1 Parent(s): a85c378

updated the readme

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md CHANGED
@@ -149,3 +149,95 @@ model-index:
149
  name: Custom Object Detection Results
150
  url: https://example.com/custom-object-detection-results
151
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149
  name: Custom Object Detection Results
150
  url: https://example.com/custom-object-detection-results
151
  ---
152
+
153
+ # YOLO11s Auto-CAD Detection Model Card
154
+
155
+ ## Model Overview
156
+ The YOLO11s Auto-CAD detection model is a computer vision model trained to detect various objects related to AutoCAD layouts, such as kitchen sinks, toilets, windows, and other fixtures. This model is based on the YOLOv5 architecture and fine-tuned for Auto-CAD-specific object detection tasks. The model is optimized for real-time inference on both GPU and CPU platforms.
157
+
158
+ ### Version Information
159
+ - **Model Version**: YOLO11
160
+ - **Ultralytics Version**: 8.3.8
161
+ - **Python Version**: 3.9.7
162
+ - **Torch Version**: 2.3.1+cu118
163
+ - **CUDA Version**: 11.8 (for GPU use)
164
+ - **Hardware**: NVIDIA GeForce RTX 4060 Laptop GPU, AMD Ryzen 7 7745HX (for CPU evaluation)
165
+ - **Model Architecture**: YOLO (You Only Look Once) v5 (fused)
166
+
167
+ ## Model Details
168
+
169
+ - **Layers**: 238
170
+ - **Parameters**: 9,417,444
171
+ - **GFLOPs**: 21.3
172
+ - **Training Type**: Supervised learning
173
+ - **Target Platform**: GPUs (NVIDIA RTX series) and CPUs (AMD Ryzen)
174
+
175
+ ### Supported Tasks
176
+ - Object detection on AutoCAD layouts
177
+ - Classification and localization of various CAD objects
178
+
179
+ ## Dataset
180
+ The model was trained on a dataset of AutoCAD object instances, including:
181
+ - **Range**
182
+ - **Entry Door**
183
+ - **Kitchen Sink**
184
+ - **Bathroom Sink**
185
+ - **Toilet**
186
+ - **Double Folding Door**
187
+ - **Window**
188
+ - **Shower**
189
+ - **Bathtub**
190
+ - **Single Folding Door**
191
+ - **Dishwasher**
192
+ - **Refrigerator**
193
+
194
+ Each object class has a varying number of images and instances in the training set.
195
+
196
+ ## Performance Metrics
197
+
198
+ | Class | Precision | Recall | mAP50 | mAP50-95 |
199
+ |--------------------|-----------|--------|-------|----------|
200
+ | all | 0.904 | 0.87 | 0.918 | 0.671 |
201
+ | range | 0.928 | 0.938 | 0.957 | 0.701 |
202
+ | entry_door | 0.941 | 0.944 | 0.966 | 0.704 |
203
+ | kitchen_sink | 0.863 | 0.828 | 0.917 | 0.662 |
204
+ | bathroom_sink | 0.909 | 0.85 | 0.929 | 0.64 |
205
+ | toilet | 0.927 | 0.904 | 0.96 | 0.667 |
206
+ | double_folding_door| 0.867 | 0.702 | 0.828 | 0.594 |
207
+ | window | 0.871 | 0.9 | 0.905 | 0.582 |
208
+ | shower | 0.907 | 0.957 | 0.947 | 0.778 |
209
+ | bathtub | 0.947 | 0.874 | 0.933 | 0.793 |
210
+ | single_folding_door| 0.877 | 0.839 | 0.9 | 0.647 |
211
+ | dishwasher | 0.912 | 0.833 | 0.863 | 0.568 |
212
+ | refrigerator | 0.901 | 0.87 | 0.916 | 0.712 |
213
+
214
+ ## Inference Speed
215
+ - **Preprocess Time**: 0.2ms per image
216
+ - **Inference Time**: 13.4ms per image
217
+ - **Postprocess Time**: 1.5ms per image
218
+
219
+ These times may vary depending on the hardware platform and the number of objects in the input image.
220
+
221
+ ## Usage
222
+
223
+ ### Requirements
224
+ - Python 3.9.7
225
+ - PyTorch 2.3.1+cu118
226
+ - CUDA-enabled GPU (optional but recommended for faster inference)
227
+ - Ultralytics YOLO package 8.3.8
228
+
229
+ ### Installation
230
+ To use the model, install the necessary dependencies:
231
+
232
+ ```bash
233
+ pip install torch==2.3.1+cu118
234
+ pip install ultralytics
235
+ ```
236
+
237
+
238
+ ## Notes
239
+ - The model supports various object categories in AutoCAD drawings, such as doors, sinks, bathtubs, etc.
240
+ - Performance metrics like mAP50 and mAP50-95 indicate the accuracy of detection and classification across multiple object categories.
241
+ - This model is optimized for both GPU and CPU, with higher performance on GPUs. The model can be used for real-time detection applications requiring accurate localization of AutoCAD objects.
242
+
243
+ ---