File size: 14,642 Bytes
3790502 d21eb1b 3790502 d21eb1b 3790502 d21eb1b 3790502 d21eb1b 3790502 1241caa 5aa14ac 11a5d4d 18f8491 1241caa 3790502 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
from typing import Optional
from dataclasses import dataclass, field
from diffusers.models import AutoencoderKL, UNet2DConditionModel
import torch
from torch import nn
from dataclasses import dataclass
@dataclass
class BaseModelConfig:
pass
from diffusers import AutoencoderKL, UNet2DConditionModel
from trainer.noise_schedulers.scheduling_ddpm_zerosnr import DDPMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.training_utils import EMAModel
from diffusers.utils import logging
from diffusers.utils.hub_utils import PushToHubMixin
from diffusers.models.modeling_utils import ModelMixin
from diffusers.configuration_utils import ConfigMixin
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# from hydra.utils import instantiate
from peft import get_peft_model
from layers import PositionalEncodingPermute1D
from einops import rearrange, repeat
from typing import Optional
from omegaconf import II
@dataclass
class LoraConfig:
_target_: str = "peft.LoraConfig"
r: int = 8
lora_alpha: int =32
target_modules: list = field(default_factory=lambda: ["to_q", "to_v", "query", "value"])
lora_dropout: float =0.0
bias: str ="none"
@dataclass
class SDModelConfig(BaseModelConfig):
_target_: str = "sd_model.SDModel"
pretrained_model_name_or_path: str = "runwayml/stable-diffusion-v1-5"
conditioning_dropout_prob: float = 0.05
use_ema: bool = True
concat_all_steps: bool = False
positional_encoding_type: Optional[str] = "sinusoidal"
positional_encoding_length: Optional[int] = None
image_positional_encoding_type: Optional[str] = None #"sinusoidal"
image_positional_encoding_length: Optional[int] = None
broadcast_positional_encoding: bool = True
sequence_length: Optional[int] = 6
text_sequence_length: Optional[int] = 7
use_lora: bool = False
# lora_cfg: Any = LoraConfig()
zero_snr: bool = True
# seed: int = 42 # TODO: inherit from higher config
# lora: LoraConfig = LoraConfig(
# )
class SDModel(ModelMixin, ConfigMixin, PushToHubMixin):
def __init__(self, cfg: SDModelConfig = None) -> None:
super().__init__()
if cfg is None: # workaround for default
self.cfg = SDModelConfig()
else:
self.cfg = cfg
print(self.cfg)
self.noise_scheduler = DDPMScheduler.from_pretrained(
self.cfg.pretrained_model_name_or_path,
subfolder="scheduler",
zero_snr=self.cfg.zero_snr)
self.text_encoder = CLIPTextModel.from_pretrained(
self.cfg.pretrained_model_name_or_path, subfolder="text_encoder",
)
self.tokenizer = CLIPTokenizer.from_pretrained(
self.cfg.pretrained_model_name_or_path, subfolder="tokenizer"
)
self.vae = AutoencoderKL.from_pretrained(self.cfg.pretrained_model_name_or_path, subfolder="vae")
self.unet = UNet2DConditionModel.from_pretrained(
self.cfg.pretrained_model_name_or_path, subfolder="unet"
)
in_channels = 8 # TODO make part of cfg
out_channels = self.unet.conv_in.out_channels
self.unet.register_to_config(in_channels=in_channels)
with torch.no_grad():
new_conv_in = nn.Conv2d(
in_channels, out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding
)
new_conv_in.weight.zero_()
new_conv_in.weight[:, :4, :, :].copy_(self.unet.conv_in.weight) # copy the pretrained weights, leave the rest as zero
new_conv_in.bias.copy_(self.unet.conv_in.bias) # EXTREMELY IMPORTANT MODIFICATION FROM INITIAL DIFFUSERS CODE
self.unet.conv_in = new_conv_in
self.init_pos()
self.init_image_pos()
if self.cfg.use_lora:
config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["to_q", "to_v", "query", "value"],
lora_dropout=0.0,
bias="none",
)
self.unet = get_peft_model(self.unet, config)
self.unet.conv_in.requires_grad_(True) # NOTE: this makes the whole input conv trainable, not just the new parameters! consider if that's what you really want
self.unet.print_trainable_parameters()
print(self.unet)
self.vae.requires_grad_(False)
self.text_encoder.requires_grad_(False)
# use_ema = True
# if use_ema:
if self.cfg.use_ema:
self.ema_unet = EMAModel(self.unet.parameters(), model_cls=UNet2DConditionModel, model_config=self.unet.config)
self.generator = None
def init_pos(self):
self.cfg.positional_encoding_length = self.cfg.text_sequence_length
if not self.cfg.broadcast_positional_encoding:
self.cfg.positional_encoding_length *= 77
elif self.cfg.positional_encoding_type == 'sinusoidal':
self.unet.pos = PositionalEncodingPermute1D(self.cfg.positional_encoding_length)
elif self.cfg.positional_encoding_type is None or self.cfg.positional_encoding_type == 'None':
self.unet.pos = nn.Identity()
else:
raise ValueError(f'Unknown positional encoding type {self.cfg.positional_encoding_type}')#torch.Generator(self.unet.device).manual_seed(42) # seed: int = 42 # TODO: inherit from higher config # device=self.unet.device
def init_image_pos(self):
self.cfg.image_positional_encoding_length = self.cfg.sequence_length
if self.cfg.image_positional_encoding_type == 'sinusoidal':
self.unet.image_pos = PositionalEncodingPermute1D(self.cfg.image_positional_encoding_length)
elif self.cfg.image_positional_encoding_type is None:
self.unet.image_pos = nn.Identity()
else:
raise ValueError(f'Unknown image positional encoding type {self.cfg.image_positional_encoding_type}')
def tokenize_captions(self, captions):
inputs = self.tokenizer(
captions, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
)
return inputs.input_ids
def forward(self, batch): # replace with input_ids, edited_pixel_values, original_pixel_values
batch_size = batch["input_ids"].shape[0]
condition_image = batch["original_pixel_values"]
input_ids = batch["input_ids"].to(self.text_encoder.device)
# We want to learn the denoising process w.r.t the edited images which
# are conditioned on the original image (which was edited) and the edit instruction.
# So, first, convert images to latent space.
edited_images = batch["edited_pixel_values"]#.to(self.cfg.weight_dtype) #TODO check dtype thing
output_seq_length = edited_images.shape[1]
# edited_images = edited_images.flatten(0,1)
edited_images = rearrange(edited_images, 'b s c h w -> (b s) c h w')
latents = self.vae.encode(edited_images).latent_dist.sample()
latents = latents * self.vae.config.scaling_factor
latents = rearrange(latents, '(b s) c h w -> b c (s h) w', s=output_seq_length)
# latents = latents.unflatten(0,(batch_size,output_seq_length)).transpose(1,2).flatten(2,3) # TODO: change the (batch_size, 3) to (batch_size, output_seq_length)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, self.noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
if self.cfg.image_positional_encoding_type is not None:
latents = self.apply_image_positional_encoding(noisy_latents, output_seq_length)
if len(input_ids.shape) == 2:
input_ids = input_ids.unsqueeze(0)
encoder_hidden_states = self.input_ids_to_text_condition(input_ids)
if self.cfg.positional_encoding_type is not None:
encoder_hidden_states = self.apply_step_positional_encoding(encoder_hidden_states)
# Get the additional image embedding for conditioning.
# Instead of getting a diagonal Gaussian here, we simply take the mode.
original_image_embeds = self.vae.encode(condition_image).latent_dist.mode() #.to(self.cfg.weight_dtype)).latent_dist.mode() #TODO check dtype thing
# Conditioning dropout to support classifier-free guidance during inference. For more details
# check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800.
if self.cfg.conditioning_dropout_prob is not None:
encoder_hidden_states, original_image_embeds = self.apply_conditioning_dropout(encoder_hidden_states, original_image_embeds)
# original_image_embeds = original_image_embeds.repeat(1,1,2,1)
# original_image_embeds = original_image_embeds.unsqueeze(2).expand(-1, -1, output_seq_length, -1, -1).reshape(batch_size, 4, 32*output_seq_length, 32)
original_image_embeds = repeat(original_image_embeds, 'b c h w -> b c (s h) w', s=output_seq_length) # TODO unify with pipeline get_image_latents
# Concatenate the `original_image_embeds` with the `noisy_latents`.
concatenated_noisy_latents = torch.cat([noisy_latents, original_image_embeds], dim=1)
target = self.get_loss_target(latents, noise, timesteps)
# Predict the noise residual and compute loss
model_pred = self.unet(concatenated_noisy_latents, timesteps, encoder_hidden_states).sample
return model_pred, target
def get_loss_target(self, latents, noise, timesteps):
# Get the target for loss depending on the prediction type
if self.noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif self.noise_scheduler.config.prediction_type == "v_prediction":
target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")
return target
def apply_conditioning_dropout(self, encoder_hidden_states, original_image_embeds):
bsz = original_image_embeds.shape[0] # changed from the comment in line 141 from latents, but should be same. TODO check
random_p = torch.rand(bsz, device=encoder_hidden_states.device, generator=self.generator) # was originally latents.device, TODO check
# Sample masks for the edit prompts.
prompt_mask = random_p < 2 * self.cfg.conditioning_dropout_prob
prompt_mask = prompt_mask.reshape(bsz, 1, 1)
# Final text conditioning.
null_conditioning = self.get_null_conditioning()
encoder_hidden_states = torch.where(prompt_mask, null_conditioning, encoder_hidden_states)
# Sample masks for the original images.
image_mask_dtype = original_image_embeds.dtype
image_mask = 1 - (
(random_p >= self.cfg.conditioning_dropout_prob).to(image_mask_dtype)
* (random_p < 3 * self.cfg.conditioning_dropout_prob).to(image_mask_dtype)
)
image_mask = image_mask.reshape(bsz, 1, 1, 1)
# Final image conditioning.
original_image_embeds = image_mask * original_image_embeds
return encoder_hidden_states,original_image_embeds
def get_null_conditioning(self):
null_token = self.tokenize_captions([""]).to(self.text_encoder.device)
# null_conditioning = self.input_ids_to_text_condition(null_token) # would apply positional encoding twice
null_conditioning = self.text_encoder(null_token)[0] # TODO fuse with input_ids_to_text_condition
if not self.cfg.concat_all_steps:
null_conditioning = repeat(null_conditioning, 'b t l -> b (s t) l', s=self.cfg.text_sequence_length)
return null_conditioning
def input_ids_to_text_condition(self, input_ids):
# Get the text embedding for conditioning.
if self.cfg.concat_all_steps:
encoder_hidden_states = self.text_encoder(input_ids)[0] # text padded to 77 tokens; encoder_hidden_states.shape = (bsz, 77, 768)
else:
input_ids = rearrange(input_ids, 'b s t->(b s) t')
encoder_hidden_states = self.text_encoder(input_ids)[0] # text padded to 77 tokens; encoder_hidden_states.shape = (bsz, 77, 768) # TODO check why this doesn't match concatenating the encodings of the three tokens; the ones that don't match are the 769-1535 dims of the feature, for tokens 15-76
# if args.use_positional_encoding: # old way: added before concat which doesn't make sense
# encoder_hidden_states = pos(encoder_hidden_states) + encoder_hidden_states
encoder_hidden_states = rearrange(encoder_hidden_states, '(b s) t d->b (s t) d', s=self.cfg.text_sequence_length)
return encoder_hidden_states
def apply_step_positional_encoding(self, encoder_hidden_states):
positional_encoding = self.unet.pos(encoder_hidden_states)
if self.cfg.broadcast_positional_encoding:
positional_encoding = repeat(positional_encoding, 'b s d -> b (s t) d', t=77) # TODO check this
encoder_hidden_states = positional_encoding + encoder_hidden_states
return encoder_hidden_states
def apply_image_positional_encoding(self, latents, output_seq_length):
original_latents_shape = latents.shape
h = original_latents_shape[2]//output_seq_length
latents = rearrange(latents, 'b c (s h) w -> b s (c h w)', s=output_seq_length)
image_pos = self.unet.image_pos(latents)
latents = latents + image_pos
latents = rearrange(latents, 'b s (c h w) -> b c (s h) w', s=output_seq_length, c=original_latents_shape[1], h=h, w=original_latents_shape[3]) # confirmed that without the pos addition in between, this reshaping brings it back to the original tensor
return latents
def instantiate_pipeline(self):
pass |