sachit-menon commited on
Commit
d98e20b
·
verified ·
1 Parent(s): 6a5d9ff

Delete sd_model.py

Browse files
Files changed (1) hide show
  1. sd_model.py +0 -297
sd_model.py DELETED
@@ -1,297 +0,0 @@
1
- from typing import Optional
2
-
3
- from dataclasses import dataclass, field
4
- from diffusers.models import AutoencoderKL, UNet2DConditionModel
5
-
6
-
7
- import torch
8
- from torch import nn
9
-
10
-
11
- from dataclasses import dataclass
12
-
13
-
14
-
15
- @dataclass
16
- class BaseModelConfig:
17
- pass
18
-
19
-
20
- from diffusers import AutoencoderKL, UNet2DConditionModel
21
- from trainer.noise_schedulers.scheduling_ddpm_zerosnr import DDPMScheduler
22
-
23
- from transformers import CLIPTextModel, CLIPTokenizer
24
- from diffusers.training_utils import EMAModel
25
-
26
- from diffusers.utils import logging
27
-
28
- from diffusers.utils.hub_utils import PushToHubMixin
29
-
30
- from diffusers.models.modeling_utils import ModelMixin
31
-
32
- from diffusers.configuration_utils import ConfigMixin
33
-
34
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
35
-
36
- # from hydra.utils import instantiate
37
- from peft import get_peft_model
38
-
39
- from layers import PositionalEncodingPermute1D
40
- from einops import rearrange, repeat
41
-
42
- from typing import Optional
43
- from omegaconf import II
44
-
45
-
46
- @dataclass
47
- class LoraConfig:
48
- _target_: str = "peft.LoraConfig"
49
- r: int = 8
50
- lora_alpha: int =32
51
- target_modules: list = field(default_factory=lambda: ["to_q", "to_v", "query", "value"])
52
- lora_dropout: float =0.0
53
- bias: str ="none"
54
-
55
-
56
- @dataclass
57
- class SDModelConfig(BaseModelConfig):
58
- _target_: str = "trainer.models.sd_model.SDModel"
59
- pretrained_model_name_or_path: str = "runwayml/stable-diffusion-v1-5"
60
- conditioning_dropout_prob: float = 0.05
61
- use_ema: bool = True
62
- concat_all_steps: bool = II("dataset.concat_all_steps")
63
- positional_encoding_type: Optional[str] = "sinusoidal"
64
- positional_encoding_length: Optional[int] = None
65
- image_positional_encoding_type: Optional[str] = None #"sinusoidal"
66
- image_positional_encoding_length: Optional[int] = None
67
- broadcast_positional_encoding: bool = True
68
- sequence_length: Optional[int] = II("dataset.sequence_length") # TODO consider changing interp on next line to this +1?
69
- text_sequence_length: Optional[int] = II("dataset.text_sequence_length")
70
- use_lora: bool = False
71
- # lora_cfg: Any = LoraConfig()
72
- zero_snr: bool = True
73
- # seed: int = 42 # TODO: inherit from higher config
74
- # lora: LoraConfig = LoraConfig(
75
- # )
76
-
77
-
78
- class SDModel(ModelMixin, ConfigMixin, PushToHubMixin):
79
- def __init__(self, cfg: SDModelConfig) -> None:
80
- super().__init__()
81
- self.cfg = cfg
82
- self.noise_scheduler = DDPMScheduler.from_pretrained(
83
- self.cfg.pretrained_model_name_or_path,
84
- subfolder="scheduler",
85
- zero_snr=self.cfg.zero_snr)
86
-
87
-
88
-
89
- self.text_encoder = CLIPTextModel.from_pretrained(
90
- self.cfg.pretrained_model_name_or_path, subfolder="text_encoder",
91
- )
92
- self.tokenizer = CLIPTokenizer.from_pretrained(
93
- self.cfg.pretrained_model_name_or_path, subfolder="tokenizer"
94
- )
95
-
96
- self.vae = AutoencoderKL.from_pretrained(self.cfg.pretrained_model_name_or_path, subfolder="vae")
97
- self.unet = UNet2DConditionModel.from_pretrained(
98
- self.cfg.pretrained_model_name_or_path, subfolder="unet"
99
- )
100
-
101
- in_channels = 8 # TODO make part of cfg
102
- out_channels = self.unet.conv_in.out_channels
103
- self.unet.register_to_config(in_channels=in_channels)
104
-
105
- with torch.no_grad():
106
- new_conv_in = nn.Conv2d(
107
- in_channels, out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding
108
- )
109
- new_conv_in.weight.zero_()
110
- new_conv_in.weight[:, :4, :, :].copy_(self.unet.conv_in.weight) # copy the pretrained weights, leave the rest as zero
111
- new_conv_in.bias.copy_(self.unet.conv_in.bias) # EXTREMELY IMPORTANT MODIFICATION FROM INITIAL DIFFUSERS CODE
112
- self.unet.conv_in = new_conv_in
113
-
114
- self.init_pos()
115
- self.init_image_pos()
116
-
117
-
118
- if self.cfg.use_lora:
119
- config = LoraConfig(
120
- r=8,
121
- lora_alpha=32,
122
- target_modules=["to_q", "to_v", "query", "value"],
123
- lora_dropout=0.0,
124
- bias="none",
125
- )
126
- self.unet = get_peft_model(self.unet, config)
127
- self.unet.conv_in.requires_grad_(True) # NOTE: this makes the whole input conv trainable, not just the new parameters! consider if that's what you really want
128
- self.unet.print_trainable_parameters()
129
- print(self.unet)
130
-
131
- self.vae.requires_grad_(False)
132
- self.text_encoder.requires_grad_(False)
133
-
134
- # use_ema = True
135
- # if use_ema:
136
- if self.cfg.use_ema:
137
- self.ema_unet = EMAModel(self.unet.parameters(), model_cls=UNet2DConditionModel, model_config=self.unet.config)
138
-
139
- self.generator = None
140
-
141
- def init_pos(self):
142
- self.cfg.positional_encoding_length = self.cfg.text_sequence_length
143
- if not self.cfg.broadcast_positional_encoding:
144
- self.cfg.positional_encoding_length *= 77
145
- elif self.cfg.positional_encoding_type == 'sinusoidal':
146
- self.unet.pos = PositionalEncodingPermute1D(self.cfg.positional_encoding_length)
147
- elif self.cfg.positional_encoding_type is None or self.cfg.positional_encoding_type == 'None':
148
- self.unet.pos = nn.Identity()
149
- else:
150
- raise ValueError(f'Unknown positional encoding type {self.cfg.positional_encoding_type}')#torch.Generator(self.unet.device).manual_seed(42) # seed: int = 42 # TODO: inherit from higher config # device=self.unet.device
151
-
152
- def init_image_pos(self):
153
- self.cfg.image_positional_encoding_length = self.cfg.sequence_length
154
- if self.cfg.image_positional_encoding_type == 'sinusoidal':
155
- self.unet.image_pos = PositionalEncodingPermute1D(self.cfg.image_positional_encoding_length)
156
- elif self.cfg.image_positional_encoding_type is None:
157
- self.unet.image_pos = nn.Identity()
158
- else:
159
- raise ValueError(f'Unknown image positional encoding type {self.cfg.image_positional_encoding_type}')
160
-
161
- def tokenize_captions(self, captions):
162
- inputs = self.tokenizer(
163
- captions, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
164
- )
165
- return inputs.input_ids
166
-
167
- def forward(self, batch): # replace with input_ids, edited_pixel_values, original_pixel_values
168
- batch_size = batch["input_ids"].shape[0]
169
- condition_image = batch["original_pixel_values"]
170
- input_ids = batch["input_ids"].to(self.text_encoder.device)
171
- # We want to learn the denoising process w.r.t the edited images which
172
- # are conditioned on the original image (which was edited) and the edit instruction.
173
- # So, first, convert images to latent space.
174
- edited_images = batch["edited_pixel_values"]#.to(self.cfg.weight_dtype) #TODO check dtype thing
175
- output_seq_length = edited_images.shape[1]
176
- # edited_images = edited_images.flatten(0,1)
177
- edited_images = rearrange(edited_images, 'b s c h w -> (b s) c h w')
178
-
179
- latents = self.vae.encode(edited_images).latent_dist.sample()
180
- latents = latents * self.vae.config.scaling_factor
181
-
182
- latents = rearrange(latents, '(b s) c h w -> b c (s h) w', s=output_seq_length)
183
- # latents = latents.unflatten(0,(batch_size,output_seq_length)).transpose(1,2).flatten(2,3) # TODO: change the (batch_size, 3) to (batch_size, output_seq_length)
184
- # Sample noise that we'll add to the latents
185
- noise = torch.randn_like(latents)
186
- bsz = latents.shape[0]
187
- # Sample a random timestep for each image
188
- timesteps = torch.randint(0, self.noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
189
- timesteps = timesteps.long()
190
-
191
- # Add noise to the latents according to the noise magnitude at each timestep
192
- # (this is the forward diffusion process)
193
- noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
194
-
195
- if self.cfg.image_positional_encoding_type is not None:
196
- latents = self.apply_image_positional_encoding(noisy_latents, output_seq_length)
197
-
198
- if len(input_ids.shape) == 2:
199
- input_ids = input_ids.unsqueeze(0)
200
-
201
- encoder_hidden_states = self.input_ids_to_text_condition(input_ids)
202
- if self.cfg.positional_encoding_type is not None:
203
- encoder_hidden_states = self.apply_step_positional_encoding(encoder_hidden_states)
204
-
205
- # Get the additional image embedding for conditioning.
206
- # Instead of getting a diagonal Gaussian here, we simply take the mode.
207
- original_image_embeds = self.vae.encode(condition_image).latent_dist.mode() #.to(self.cfg.weight_dtype)).latent_dist.mode() #TODO check dtype thing
208
-
209
- # Conditioning dropout to support classifier-free guidance during inference. For more details
210
- # check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800.
211
- if self.cfg.conditioning_dropout_prob is not None:
212
- encoder_hidden_states, original_image_embeds = self.apply_conditioning_dropout(encoder_hidden_states, original_image_embeds)
213
-
214
- # original_image_embeds = original_image_embeds.repeat(1,1,2,1)
215
- # original_image_embeds = original_image_embeds.unsqueeze(2).expand(-1, -1, output_seq_length, -1, -1).reshape(batch_size, 4, 32*output_seq_length, 32)
216
- original_image_embeds = repeat(original_image_embeds, 'b c h w -> b c (s h) w', s=output_seq_length) # TODO unify with pipeline get_image_latents
217
-
218
- # Concatenate the `original_image_embeds` with the `noisy_latents`.
219
- concatenated_noisy_latents = torch.cat([noisy_latents, original_image_embeds], dim=1)
220
-
221
- target = self.get_loss_target(latents, noise, timesteps)
222
-
223
- # Predict the noise residual and compute loss
224
- model_pred = self.unet(concatenated_noisy_latents, timesteps, encoder_hidden_states).sample
225
- return model_pred, target
226
-
227
- def get_loss_target(self, latents, noise, timesteps):
228
- # Get the target for loss depending on the prediction type
229
- if self.noise_scheduler.config.prediction_type == "epsilon":
230
- target = noise
231
- elif self.noise_scheduler.config.prediction_type == "v_prediction":
232
- target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
233
- else:
234
- raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")
235
- return target
236
-
237
- def apply_conditioning_dropout(self, encoder_hidden_states, original_image_embeds):
238
- bsz = original_image_embeds.shape[0] # changed from the comment in line 141 from latents, but should be same. TODO check
239
- random_p = torch.rand(bsz, device=encoder_hidden_states.device, generator=self.generator) # was originally latents.device, TODO check
240
- # Sample masks for the edit prompts.
241
- prompt_mask = random_p < 2 * self.cfg.conditioning_dropout_prob
242
- prompt_mask = prompt_mask.reshape(bsz, 1, 1)
243
- # Final text conditioning.
244
- null_conditioning = self.get_null_conditioning()
245
- encoder_hidden_states = torch.where(prompt_mask, null_conditioning, encoder_hidden_states)
246
-
247
- # Sample masks for the original images.
248
- image_mask_dtype = original_image_embeds.dtype
249
- image_mask = 1 - (
250
- (random_p >= self.cfg.conditioning_dropout_prob).to(image_mask_dtype)
251
- * (random_p < 3 * self.cfg.conditioning_dropout_prob).to(image_mask_dtype)
252
- )
253
- image_mask = image_mask.reshape(bsz, 1, 1, 1)
254
- # Final image conditioning.
255
- original_image_embeds = image_mask * original_image_embeds
256
- return encoder_hidden_states,original_image_embeds
257
-
258
- def get_null_conditioning(self):
259
- null_token = self.tokenize_captions([""]).to(self.text_encoder.device)
260
- # null_conditioning = self.input_ids_to_text_condition(null_token) # would apply positional encoding twice
261
- null_conditioning = self.text_encoder(null_token)[0] # TODO fuse with input_ids_to_text_condition
262
- if not self.cfg.concat_all_steps:
263
- null_conditioning = repeat(null_conditioning, 'b t l -> b (s t) l', s=self.cfg.text_sequence_length)
264
- return null_conditioning
265
-
266
- def input_ids_to_text_condition(self, input_ids):
267
- # Get the text embedding for conditioning.
268
- if self.cfg.concat_all_steps:
269
- encoder_hidden_states = self.text_encoder(input_ids)[0] # text padded to 77 tokens; encoder_hidden_states.shape = (bsz, 77, 768)
270
- else:
271
- input_ids = rearrange(input_ids, 'b s t->(b s) t')
272
- encoder_hidden_states = self.text_encoder(input_ids)[0] # text padded to 77 tokens; encoder_hidden_states.shape = (bsz, 77, 768) # TODO check why this doesn't match concatenating the encodings of the three tokens; the ones that don't match are the 769-1535 dims of the feature, for tokens 15-76
273
-
274
- # if args.use_positional_encoding: # old way: added before concat which doesn't make sense
275
- # encoder_hidden_states = pos(encoder_hidden_states) + encoder_hidden_states
276
- encoder_hidden_states = rearrange(encoder_hidden_states, '(b s) t d->b (s t) d', s=self.cfg.text_sequence_length)
277
-
278
- return encoder_hidden_states
279
-
280
- def apply_step_positional_encoding(self, encoder_hidden_states):
281
- positional_encoding = self.unet.pos(encoder_hidden_states)
282
- if self.cfg.broadcast_positional_encoding:
283
- positional_encoding = repeat(positional_encoding, 'b s d -> b (s t) d', t=77) # TODO check this
284
- encoder_hidden_states = positional_encoding + encoder_hidden_states
285
- return encoder_hidden_states
286
-
287
- def apply_image_positional_encoding(self, latents, output_seq_length):
288
- original_latents_shape = latents.shape
289
- h = original_latents_shape[2]//output_seq_length
290
- latents = rearrange(latents, 'b c (s h) w -> b s (c h w)', s=output_seq_length)
291
- image_pos = self.unet.image_pos(latents)
292
- latents = latents + image_pos
293
- latents = rearrange(latents, 'b s (c h w) -> b c (s h) w', s=output_seq_length, c=original_latents_shape[1], h=h, w=original_latents_shape[3]) # confirmed that without the pos addition in between, this reshaping brings it back to the original tensor
294
- return latents
295
-
296
- def instantiate_pipeline(self):
297
- pass