sadhaklal commited on
Commit
8027b61
·
verified ·
1 Parent(s): dfa3cf0

added "Usage" section to README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -3
README.md CHANGED
@@ -20,14 +20,64 @@ Code: https://github.com/sambitmukherjee/handson-ml3-pytorch/blob/main/chapter10
20
 
21
  Experiment tracking: https://wandb.ai/sadhaklal/logistic-regression-iris
22
 
23
- ## Metric
24
-
25
- The validation set contains 30% of the examples (selected at random using stratification on the target variable):
26
 
27
  ```
 
 
 
 
 
 
 
 
 
 
 
 
28
  from sklearn.model_selection import train_test_split
29
 
30
  X_train, X_val, y_train, y_val = train_test_split(X.values, y.values, test_size=0.3, stratify=y, random_state=42)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  ```
32
 
 
 
 
 
33
  Accuracy on the validation set: 1.0
 
20
 
21
  Experiment tracking: https://wandb.ai/sadhaklal/logistic-regression-iris
22
 
23
+ ## Usage
 
 
24
 
25
  ```
26
+ !pip install -q datasets
27
+
28
+ from datasets import load_dataset
29
+
30
+ iris = load_dataset("scikit-learn/iris")
31
+ iris.set_format("pandas")
32
+ iris_df = iris['train'][:]
33
+ X = iris_df[['PetalLengthCm', 'PetalWidthCm']]
34
+ y = (iris_df['Species'] == "Iris-setosa").astype(int)
35
+
36
+ class_names = ["Not Iris-setosa", "Iris-setosa"]
37
+
38
  from sklearn.model_selection import train_test_split
39
 
40
  X_train, X_val, y_train, y_val = train_test_split(X.values, y.values, test_size=0.3, stratify=y, random_state=42)
41
+ X_means, X_stds = X_train.mean(axis=0), X_train.std(axis=0)
42
+
43
+ import torch
44
+ import torch.nn as nn
45
+ from huggingface_hub import PyTorchModelHubMixin
46
+
47
+ device = torch.device("cpu")
48
+
49
+ class LinearModel(nn.Module, PyTorchModelHubMixin):
50
+ def __init__(self):
51
+ super().__init__()
52
+ self.fc = nn.Linear(2, 1)
53
+
54
+ def forward(self, x):
55
+ out = self.fc(x)
56
+ return out
57
+
58
+ model = LinearModel.from_pretrained("sadhaklal/logistic-regression-iris")
59
+ model.to(device)
60
+
61
+ # Inference on new data:
62
+ import numpy as np
63
+
64
+ X_new = np.array([[2.0, 0.5], [3.0, 1.0]]) # Contains data on 2 new flowers.
65
+ X_new = ((X_new - X_means) / X_stds) # Normalize.
66
+ X_new = torch.from_numpy(X_new).float()
67
+
68
+ model.eval()
69
+ X_new = X_new.to(device)
70
+ with torch.no_grad():
71
+ logits = model(X_new)
72
+ proba = torch.sigmoid(logits.squeeze())
73
+ preds = (proba > 0.5).long()
74
+
75
+ print(f"Predicted classes: {preds}")
76
+ print(f"Predicted probabilities of being Iris-setosa: {proba}")
77
  ```
78
 
79
+ ## Metric
80
+
81
+ As shown above, the validation set contains 30% of the examples (selected at random in a stratified fashion).
82
+
83
  Accuracy on the validation set: 1.0