saeedHedayatian commited on
Commit
e8dafcf
1 Parent(s): 77f9bbd

First commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 274.79 +/- 22.43
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9b82294710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9b822947a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9b82294830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9b822948c0>", "_build": "<function ActorCriticPolicy._build at 0x7f9b82294950>", "forward": "<function ActorCriticPolicy.forward at 0x7f9b822949e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9b82294a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9b82294b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9b82294b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9b82294c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9b82294cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9b822e6420>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVcAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCdmaUXZQoS0BLIEsgSxBljAJwaZRdlChLQEsgSyBLEGV1YXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [{"vf": [64, 32, 32, 16], "pi": [64, 32, 32, 16]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651714358.1590164, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIA9Jj0UXL26abcFM4TpPTDldmq5asCqswAAgD8AAIA/zaXWvB+6l7slH5Y8G8emPMqN9LwFYow9AACAPwAAgD/NDp++k287P3fGJr5JYvO+f6yzvgDQ9zwAAAAAAAAAAE3nGD3bRHg/IIG1PLGPHr+RGGY9DudsPAAAAAAAAAAADdk1vmQ2gD6SRV4+p9WOvrZU+rxinxQ8AAAAAAAAAADm9jK+b5igPm5qgj79Dq6+yS05Ot0fuz0AAAAAAAAAAACHvj0AeUg/w/bZPW+oGL/6zXg9qhESvQAAAAAAAAAATWu1PbhctDrirna89HsfPYoBGDxmrAM+AAAAAAAAAAAaz2M9mSWZP2LTXz4X1Rm/KJ1MPfqE9j0AAAAAAAAAAM0iQjz2xH26PTibPco6ozwzBou7WluNPQAAgD8AAIA/je3dPcP5F7rI7p+zz+44r6kIybrKP7kzAACAPwAAgD/zz5M9w11uugXd6rvigMo08WP/up2nLrQAAIA/AAAAAA3yPj5joTI9FWw5voFrhL63Iry3H9HFvQAAAAAAAAAAQBNbvlG+lD7DBMc+uuiTvjG4wTtSlMU9AAAAAAAAAAAAfio86ACWPVi3Yjz1nWC+rujuuzjD8TwAAAAAAAAAAGb8J767gGU/7ZCWviQW+L6674i+9aD0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlzldFhOWb0CUhpRSlIwBbJRL14wBdJRHQJHgrWAf+0h1fZQoaAZoCWgPQwg58dWOIgdwQJSGlFKUaBVLy2gWR0CR4XilzltCdX2UKGgGaAloD0MImUhpNg/sbkCUhpRSlGgVS9doFkdAkeHGhufmLnV9lChoBmgJaA9DCP0QGyxcgHFAlIaUUpRoFUvjaBZHQJHh2H6/IsB1fZQoaAZoCWgPQwiSrpl8c0NwQJSGlFKUaBVL42gWR0CR4f8WsRxtdX2UKGgGaAloD0MIGF+0x8s9c0CUhpRSlGgVS/1oFkdAkeIe/pMYdnV9lChoBmgJaA9DCAZKCiyAVnBAlIaUUpRoFUvzaBZHQJHjCN2ki2V1fZQoaAZoCWgPQwgDeAskaExxQJSGlFKUaBVL82gWR0CR46n1FpfydX2UKGgGaAloD0MIOQzmrxCVcUCUhpRSlGgVS9JoFkdAkeWUX531SXV9lChoBmgJaA9DCLcm3ZbIEHNAlIaUUpRoFU0BAWgWR0CR5j04R28qdX2UKGgGaAloD0MIstXllADqbkCUhpRSlGgVS9poFkdAkeZIy0rsjXV9lChoBmgJaA9DCNoc5zbhEHJAlIaUUpRoFU0DAWgWR0CR5xq+rU9ZdX2UKGgGaAloD0MIrwlpjQF/cUCUhpRSlGgVS8toFkdAkedi8an753V9lChoBmgJaA9DCEI/U6+bHXNAlIaUUpRoFU0KAWgWR0CR55G9HtngdX2UKGgGaAloD0MIf6ZetwhvckCUhpRSlGgVS+hoFkdAkeggmiQDFXV9lChoBmgJaA9DCANd+wJ6tHBAlIaUUpRoFUvHaBZHQJHoM0aZQYV1fZQoaAZoCWgPQwhOt+wQP9lxQJSGlFKUaBVL4mgWR0CR6EsTFl06dX2UKGgGaAloD0MIuHNhpBescECUhpRSlGgVS81oFkdAkeilJpWV/3V9lChoBmgJaA9DCK36XG1FuXJAlIaUUpRoFUvgaBZHQJHpSaw2VFB1fZQoaAZoCWgPQwhZpfRMr+RwQJSGlFKUaBVL6GgWR0CR6a8WsRxtdX2UKGgGaAloD0MILEZday+CcUCUhpRSlGgVS+toFkdAkenmqT8pC3V9lChoBmgJaA9DCPQ2NjuShXJAlIaUUpRoFUvzaBZHQJHrAx46fap1fZQoaAZoCWgPQwhrRDAOriVzQJSGlFKUaBVL52gWR0CR7Vk+5e7ddX2UKGgGaAloD0MISiandkaZcUCUhpRSlGgVS8doFkdAke4LayrxRXV9lChoBmgJaA9DCJkqGJWUTHFAlIaUUpRoFUvnaBZHQJHuGSU1Q691fZQoaAZoCWgPQwg4LuOmhtBxQJSGlFKUaBVL6GgWR0CR7hhvR7Z4dX2UKGgGaAloD0MI/RAbLJynYECUhpRSlGgVTegDaBZHQJIDTzcynDR1fZQoaAZoCWgPQwgGZ/D3i3VuQJSGlFKUaBVL52gWR0CSA7dlNDc/dX2UKGgGaAloD0MI0lJ5O0JJckCUhpRSlGgVS9loFkdAkgRBikO7QXV9lChoBmgJaA9DCK01lNpLPnNAlIaUUpRoFUv2aBZHQJIEoidJ8OV1fZQoaAZoCWgPQwi3m+Cbpj9zQJSGlFKUaBVL4WgWR0CSBLD1GsmwdX2UKGgGaAloD0MIWFTE6SR0c0CUhpRSlGgVS/NoFkdAkgUpYgaFVXV9lChoBmgJaA9DCPxW68RljG1AlIaUUpRoFUvWaBZHQJIFYTakAPx1fZQoaAZoCWgPQwjC9pMxvmBqQJSGlFKUaBVNfwFoFkdAkgVpKe05VHV9lChoBmgJaA9DCHJNgcxOkm9AlIaUUpRoFUvdaBZHQJIF77cfvF51fZQoaAZoCWgPQwglP+JXLBNzQJSGlFKUaBVNAQFoFkdAkgX/eLvTgHV9lChoBmgJaA9DCG77HvVXNHJAlIaUUpRoFUvtaBZHQJIGjeFcpsp1fZQoaAZoCWgPQwgHB3sTQ0hEQJSGlFKUaBVLdGgWR0CSB7ZLZi/gdX2UKGgGaAloD0MICYm0jT8vckCUhpRSlGgVTQIBaBZHQJIISbb1yvN1fZQoaAZoCWgPQwhPBHEezlRuQJSGlFKUaBVLz2gWR0CSCLtihFmWdX2UKGgGaAloD0MIzuDvFzNRcECUhpRSlGgVS75oFkdAkgjN2xIJ7nV9lChoBmgJaA9DCD4jERrBS3FAlIaUUpRoFUvLaBZHQJIJ5CTlkpZ1fZQoaAZoCWgPQwgO2xZl9iNxQJSGlFKUaBVL5GgWR0CSCfsImgJ1dX2UKGgGaAloD0MI4UIewc0gcECUhpRSlGgVS+VoFkdAkgn4na37UHV9lChoBmgJaA9DCP0yGCMSp3BAlIaUUpRoFUvgaBZHQJIKLZWaMJh1fZQoaAZoCWgPQwhPPj225UhwQJSGlFKUaBVLvWgWR0CSCvnYxtYTdX2UKGgGaAloD0MIeVc9YB44bkCUhpRSlGgVS+NoFkdAkgt5bhWHUXV9lChoBmgJaA9DCAMLYMqAE3BAlIaUUpRoFUv0aBZHQJIMgfuCwr11fZQoaAZoCWgPQwgs8uuHGJdyQJSGlFKUaBVNCAFoFkdAkgydT987ZHV9lChoBmgJaA9DCJ/KaU8J83BAlIaUUpRoFUvJaBZHQJIMuzNUwSJ1fZQoaAZoCWgPQwi2aWyvRUBwQJSGlFKUaBVL6mgWR0CSDQm16Vt5dX2UKGgGaAloD0MI+dueILH5cECUhpRSlGgVS+poFkdAkg0Z4bCJoHV9lChoBmgJaA9DCDWbx2EwhHJAlIaUUpRoFU0BAWgWR0CSDSZ3LV4HdX2UKGgGaAloD0MIYcQ+ARQ9cECUhpRSlGgVS8ZoFkdAkg465LAYYXV9lChoBmgJaA9DCGniHeDJ2m9AlIaUUpRoFUvdaBZHQJIOW5y2hIx1fZQoaAZoCWgPQwjRIAVPIdxyQJSGlFKUaBVL+GgWR0CSEEfXf642dX2UKGgGaAloD0MIpu7KLhjDbUCUhpRSlGgVS9NoFkdAkhCqasp5NXV9lChoBmgJaA9DCNm0UgjkwXFAlIaUUpRoFUu3aBZHQJIQta+vhZR1fZQoaAZoCWgPQwhCmUaTizRxQJSGlFKUaBVL4GgWR0CSEMww0wajdX2UKGgGaAloD0MIObUzTG3Ub0CUhpRSlGgVS+toFkdAkhFE/GEPD3V9lChoBmgJaA9DCNUHkncO4G9AlIaUUpRoFUu9aBZHQJIRcLUkOZt1fZQoaAZoCWgPQwi54XfTLeNvQJSGlFKUaBVL8mgWR0CSEXmz0HyFdX2UKGgGaAloD0MIM6fLYmI0ckCUhpRSlGgVTRsBaBZHQJIRk1sLv1F1fZQoaAZoCWgPQwjeO2pMSG5xQJSGlFKUaBVLvmgWR0CSEvF10T11dX2UKGgGaAloD0MIUmLX9jZRckCUhpRSlGgVS8FoFkdAkhMZy2hIv3V9lChoBmgJaA9DCIMWEjD6kXFAlIaUUpRoFUvfaBZHQJITswblzU91fZQoaAZoCWgPQwjVdhN8Ez1zQJSGlFKUaBVL82gWR0CSFDzjFQ2udX2UKGgGaAloD0MIIQTkS6g/c0CUhpRSlGgVTQEBaBZHQJIUk9Mbm2d1fZQoaAZoCWgPQwgaGk8EsYlxQJSGlFKUaBVLzWgWR0CSFQGoaUA1dX2UKGgGaAloD0MId7temuJhcUCUhpRSlGgVS9ZoFkdAkhUmLtNSInV9lChoBmgJaA9DCD8cJES5WXFAlIaUUpRoFU0CAWgWR0CSFUzUqhDgdX2UKGgGaAloD0MImODUB5JTcECUhpRSlGgVS8toFkdAkharK/20zHV9lChoBmgJaA9DCL5ojxdSw3JAlIaUUpRoFUvdaBZHQJIXmM2m52B1fZQoaAZoCWgPQwgpyxDHOkdwQJSGlFKUaBVL4GgWR0CSF8j94u9OdX2UKGgGaAloD0MI662BrZJ2b0CUhpRSlGgVS8xoFkdAkhgJAD7qIXV9lChoBmgJaA9DCFxaDYk7d3FAlIaUUpRoFUvUaBZHQJIYKWAwwkB1fZQoaAZoCWgPQwj3PlWFxvtwQJSGlFKUaBVL7mgWR0CSGF73wkPddX2UKGgGaAloD0MIayv2lx28cUCUhpRSlGgVS+hoFkdAkhibgwXZXnV9lChoBmgJaA9DCOfG9IRlXnFAlIaUUpRoFUvnaBZHQJIYxxkupS91fZQoaAZoCWgPQwi6awn5YBNyQJSGlFKUaBVL7mgWR0CSGotZ3cHodX2UKGgGaAloD0MIDt3sD9TxcUCUhpRSlGgVS/RoFkdAkhrllGwzL3V9lChoBmgJaA9DCF2o/Gt5a3FAlIaUUpRoFUvSaBZHQJIa6SW7e2x1fZQoaAZoCWgPQwgFacaiqSNxQJSGlFKUaBVLxGgWR0CSGzqPwNLEdX2UKGgGaAloD0MI2jf3Vw95c0CUhpRSlGgVS/RoFkdAkht5gTh5xHV9lChoBmgJaA9DCMgkI2dhb3FAlIaUUpRoFUvzaBZHQJIcQvPC2tx1fZQoaAZoCWgPQwhKtrqcUl9zQJSGlFKUaBVL4mgWR0CSHEKaoddWdX2UKGgGaAloD0MI1Qj9TD1QcECUhpRSlGgVS79oFkdAkhzMOCoS+XV9lChoBmgJaA9DCA/Tvrm/bnJAlIaUUpRoFUv4aBZHQJIdFOWSlnB1fZQoaAZoCWgPQwhsCI7LODBvQJSGlFKUaBVLx2gWR0CSHkTB68g7dX2UKGgGaAloD0MIoIzxYXagcECUhpRSlGgVS9hoFkdAkh5+glF+eHV9lChoBmgJaA9DCPYINUOq3XBAlIaUUpRoFUvWaBZHQJIekP5HmRx1fZQoaAZoCWgPQwiSsdr8vzFwQJSGlFKUaBVLymgWR0CSHrY5T6zmdX2UKGgGaAloD0MIhlrTvOOTbUCUhpRSlGgVS8xoFkdAkh8msmv4d3V9lChoBmgJaA9DCEXZW8p5UXNAlIaUUpRoFUvpaBZHQJIfaS1Vo6F1fZQoaAZoCWgPQwgAVdy4BQhwQJSGlFKUaBVL7GgWR0CSH+a6BiCrdX2UKGgGaAloD0MIqaPjaqQPckCUhpRSlGgVS81oFkdAkiEsqjJuEXV9lChoBmgJaA9DCPKwUGsaxm5AlIaUUpRoFUvaaBZHQJIhmoVEd/91fZQoaAZoCWgPQwi6o//lWkNyQJSGlFKUaBVL02gWR0CSIbI5YHPedX2UKGgGaAloD0MInS0gtN44ckCUhpRSlGgVS/ZoFkdAkiIe5vtMPHV9lChoBmgJaA9DCGh4swbvwm9AlIaUUpRoFUvFaBZHQJIiTggow251ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.99, "ent_coef": 0.0, "vf_coef": 0.8, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b57dc1d8a445425469273a05e8df0cdb697e2de2eef59da0813f1d502164f49
3
+ size 136948
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9b82294710>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9b822947a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9b82294830>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9b822948c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9b82294950>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9b822949e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9b82294a70>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9b82294b00>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9b82294b90>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9b82294c20>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9b82294cb0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9b822e6420>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVcAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCdmaUXZQoS0BLIEsgSxBljAJwaZRdlChLQEsgSyBLEGV1YXUu",
25
+ "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
+ "net_arch": [
27
+ {
28
+ "vf": [
29
+ 64,
30
+ 32,
31
+ 32,
32
+ 16
33
+ ],
34
+ "pi": [
35
+ 64,
36
+ 32,
37
+ 32,
38
+ 16
39
+ ]
40
+ }
41
+ ]
42
+ },
43
+ "observation_space": {
44
+ ":type:": "<class 'gym.spaces.box.Box'>",
45
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
46
+ "dtype": "float32",
47
+ "_shape": [
48
+ 8
49
+ ],
50
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
51
+ "high": "[inf inf inf inf inf inf inf inf]",
52
+ "bounded_below": "[False False False False False False False False]",
53
+ "bounded_above": "[False False False False False False False False]",
54
+ "_np_random": null
55
+ },
56
+ "action_space": {
57
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
58
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
59
+ "n": 4,
60
+ "_shape": [],
61
+ "dtype": "int64",
62
+ "_np_random": null
63
+ },
64
+ "n_envs": 16,
65
+ "num_timesteps": 1015808,
66
+ "_total_timesteps": 1000000,
67
+ "_num_timesteps_at_start": 0,
68
+ "seed": null,
69
+ "action_noise": null,
70
+ "start_time": 1651714358.1590164,
71
+ "learning_rate": 0.0007,
72
+ "tensorboard_log": null,
73
+ "lr_schedule": {
74
+ ":type:": "<class 'function'>",
75
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
76
+ },
77
+ "_last_obs": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIA9Jj0UXL26abcFM4TpPTDldmq5asCqswAAgD8AAIA/zaXWvB+6l7slH5Y8G8emPMqN9LwFYow9AACAPwAAgD/NDp++k287P3fGJr5JYvO+f6yzvgDQ9zwAAAAAAAAAAE3nGD3bRHg/IIG1PLGPHr+RGGY9DudsPAAAAAAAAAAADdk1vmQ2gD6SRV4+p9WOvrZU+rxinxQ8AAAAAAAAAADm9jK+b5igPm5qgj79Dq6+yS05Ot0fuz0AAAAAAAAAAACHvj0AeUg/w/bZPW+oGL/6zXg9qhESvQAAAAAAAAAATWu1PbhctDrirna89HsfPYoBGDxmrAM+AAAAAAAAAAAaz2M9mSWZP2LTXz4X1Rm/KJ1MPfqE9j0AAAAAAAAAAM0iQjz2xH26PTibPco6ozwzBou7WluNPQAAgD8AAIA/je3dPcP5F7rI7p+zz+44r6kIybrKP7kzAACAPwAAgD/zz5M9w11uugXd6rvigMo08WP/up2nLrQAAIA/AAAAAA3yPj5joTI9FWw5voFrhL63Iry3H9HFvQAAAAAAAAAAQBNbvlG+lD7DBMc+uuiTvjG4wTtSlMU9AAAAAAAAAAAAfio86ACWPVi3Yjz1nWC+rujuuzjD8TwAAAAAAAAAAGb8J767gGU/7ZCWviQW+L6674i+9aD0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
80
+ },
81
+ "_last_episode_starts": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
84
+ },
85
+ "_last_original_obs": null,
86
+ "_episode_num": 0,
87
+ "use_sde": false,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": -0.015808000000000044,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVKRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlzldFhOWb0CUhpRSlIwBbJRL14wBdJRHQJHgrWAf+0h1fZQoaAZoCWgPQwg58dWOIgdwQJSGlFKUaBVLy2gWR0CR4XilzltCdX2UKGgGaAloD0MImUhpNg/sbkCUhpRSlGgVS9doFkdAkeHGhufmLnV9lChoBmgJaA9DCP0QGyxcgHFAlIaUUpRoFUvjaBZHQJHh2H6/IsB1fZQoaAZoCWgPQwiSrpl8c0NwQJSGlFKUaBVL42gWR0CR4f8WsRxtdX2UKGgGaAloD0MIGF+0x8s9c0CUhpRSlGgVS/1oFkdAkeIe/pMYdnV9lChoBmgJaA9DCAZKCiyAVnBAlIaUUpRoFUvzaBZHQJHjCN2ki2V1fZQoaAZoCWgPQwgDeAskaExxQJSGlFKUaBVL82gWR0CR46n1FpfydX2UKGgGaAloD0MIOQzmrxCVcUCUhpRSlGgVS9JoFkdAkeWUX531SXV9lChoBmgJaA9DCLcm3ZbIEHNAlIaUUpRoFU0BAWgWR0CR5j04R28qdX2UKGgGaAloD0MIstXllADqbkCUhpRSlGgVS9poFkdAkeZIy0rsjXV9lChoBmgJaA9DCNoc5zbhEHJAlIaUUpRoFU0DAWgWR0CR5xq+rU9ZdX2UKGgGaAloD0MIrwlpjQF/cUCUhpRSlGgVS8toFkdAkedi8an753V9lChoBmgJaA9DCEI/U6+bHXNAlIaUUpRoFU0KAWgWR0CR55G9HtngdX2UKGgGaAloD0MIf6ZetwhvckCUhpRSlGgVS+hoFkdAkeggmiQDFXV9lChoBmgJaA9DCANd+wJ6tHBAlIaUUpRoFUvHaBZHQJHoM0aZQYV1fZQoaAZoCWgPQwhOt+wQP9lxQJSGlFKUaBVL4mgWR0CR6EsTFl06dX2UKGgGaAloD0MIuHNhpBescECUhpRSlGgVS81oFkdAkeilJpWV/3V9lChoBmgJaA9DCK36XG1FuXJAlIaUUpRoFUvgaBZHQJHpSaw2VFB1fZQoaAZoCWgPQwhZpfRMr+RwQJSGlFKUaBVL6GgWR0CR6a8WsRxtdX2UKGgGaAloD0MILEZday+CcUCUhpRSlGgVS+toFkdAkenmqT8pC3V9lChoBmgJaA9DCPQ2NjuShXJAlIaUUpRoFUvzaBZHQJHrAx46fap1fZQoaAZoCWgPQwhrRDAOriVzQJSGlFKUaBVL52gWR0CR7Vk+5e7ddX2UKGgGaAloD0MISiandkaZcUCUhpRSlGgVS8doFkdAke4LayrxRXV9lChoBmgJaA9DCJkqGJWUTHFAlIaUUpRoFUvnaBZHQJHuGSU1Q691fZQoaAZoCWgPQwg4LuOmhtBxQJSGlFKUaBVL6GgWR0CR7hhvR7Z4dX2UKGgGaAloD0MI/RAbLJynYECUhpRSlGgVTegDaBZHQJIDTzcynDR1fZQoaAZoCWgPQwgGZ/D3i3VuQJSGlFKUaBVL52gWR0CSA7dlNDc/dX2UKGgGaAloD0MI0lJ5O0JJckCUhpRSlGgVS9loFkdAkgRBikO7QXV9lChoBmgJaA9DCK01lNpLPnNAlIaUUpRoFUv2aBZHQJIEoidJ8OV1fZQoaAZoCWgPQwi3m+Cbpj9zQJSGlFKUaBVL4WgWR0CSBLD1GsmwdX2UKGgGaAloD0MIWFTE6SR0c0CUhpRSlGgVS/NoFkdAkgUpYgaFVXV9lChoBmgJaA9DCPxW68RljG1AlIaUUpRoFUvWaBZHQJIFYTakAPx1fZQoaAZoCWgPQwjC9pMxvmBqQJSGlFKUaBVNfwFoFkdAkgVpKe05VHV9lChoBmgJaA9DCHJNgcxOkm9AlIaUUpRoFUvdaBZHQJIF77cfvF51fZQoaAZoCWgPQwglP+JXLBNzQJSGlFKUaBVNAQFoFkdAkgX/eLvTgHV9lChoBmgJaA9DCG77HvVXNHJAlIaUUpRoFUvtaBZHQJIGjeFcpsp1fZQoaAZoCWgPQwgHB3sTQ0hEQJSGlFKUaBVLdGgWR0CSB7ZLZi/gdX2UKGgGaAloD0MICYm0jT8vckCUhpRSlGgVTQIBaBZHQJIISbb1yvN1fZQoaAZoCWgPQwhPBHEezlRuQJSGlFKUaBVLz2gWR0CSCLtihFmWdX2UKGgGaAloD0MIzuDvFzNRcECUhpRSlGgVS75oFkdAkgjN2xIJ7nV9lChoBmgJaA9DCD4jERrBS3FAlIaUUpRoFUvLaBZHQJIJ5CTlkpZ1fZQoaAZoCWgPQwgO2xZl9iNxQJSGlFKUaBVL5GgWR0CSCfsImgJ1dX2UKGgGaAloD0MI4UIewc0gcECUhpRSlGgVS+VoFkdAkgn4na37UHV9lChoBmgJaA9DCP0yGCMSp3BAlIaUUpRoFUvgaBZHQJIKLZWaMJh1fZQoaAZoCWgPQwhPPj225UhwQJSGlFKUaBVLvWgWR0CSCvnYxtYTdX2UKGgGaAloD0MIeVc9YB44bkCUhpRSlGgVS+NoFkdAkgt5bhWHUXV9lChoBmgJaA9DCAMLYMqAE3BAlIaUUpRoFUv0aBZHQJIMgfuCwr11fZQoaAZoCWgPQwgs8uuHGJdyQJSGlFKUaBVNCAFoFkdAkgydT987ZHV9lChoBmgJaA9DCJ/KaU8J83BAlIaUUpRoFUvJaBZHQJIMuzNUwSJ1fZQoaAZoCWgPQwi2aWyvRUBwQJSGlFKUaBVL6mgWR0CSDQm16Vt5dX2UKGgGaAloD0MI+dueILH5cECUhpRSlGgVS+poFkdAkg0Z4bCJoHV9lChoBmgJaA9DCDWbx2EwhHJAlIaUUpRoFU0BAWgWR0CSDSZ3LV4HdX2UKGgGaAloD0MIYcQ+ARQ9cECUhpRSlGgVS8ZoFkdAkg465LAYYXV9lChoBmgJaA9DCGniHeDJ2m9AlIaUUpRoFUvdaBZHQJIOW5y2hIx1fZQoaAZoCWgPQwjRIAVPIdxyQJSGlFKUaBVL+GgWR0CSEEfXf642dX2UKGgGaAloD0MIpu7KLhjDbUCUhpRSlGgVS9NoFkdAkhCqasp5NXV9lChoBmgJaA9DCNm0UgjkwXFAlIaUUpRoFUu3aBZHQJIQta+vhZR1fZQoaAZoCWgPQwhCmUaTizRxQJSGlFKUaBVL4GgWR0CSEMww0wajdX2UKGgGaAloD0MIObUzTG3Ub0CUhpRSlGgVS+toFkdAkhFE/GEPD3V9lChoBmgJaA9DCNUHkncO4G9AlIaUUpRoFUu9aBZHQJIRcLUkOZt1fZQoaAZoCWgPQwi54XfTLeNvQJSGlFKUaBVL8mgWR0CSEXmz0HyFdX2UKGgGaAloD0MIM6fLYmI0ckCUhpRSlGgVTRsBaBZHQJIRk1sLv1F1fZQoaAZoCWgPQwjeO2pMSG5xQJSGlFKUaBVLvmgWR0CSEvF10T11dX2UKGgGaAloD0MIUmLX9jZRckCUhpRSlGgVS8FoFkdAkhMZy2hIv3V9lChoBmgJaA9DCIMWEjD6kXFAlIaUUpRoFUvfaBZHQJITswblzU91fZQoaAZoCWgPQwjVdhN8Ez1zQJSGlFKUaBVL82gWR0CSFDzjFQ2udX2UKGgGaAloD0MIIQTkS6g/c0CUhpRSlGgVTQEBaBZHQJIUk9Mbm2d1fZQoaAZoCWgPQwgaGk8EsYlxQJSGlFKUaBVLzWgWR0CSFQGoaUA1dX2UKGgGaAloD0MId7temuJhcUCUhpRSlGgVS9ZoFkdAkhUmLtNSInV9lChoBmgJaA9DCD8cJES5WXFAlIaUUpRoFU0CAWgWR0CSFUzUqhDgdX2UKGgGaAloD0MImODUB5JTcECUhpRSlGgVS8toFkdAkharK/20zHV9lChoBmgJaA9DCL5ojxdSw3JAlIaUUpRoFUvdaBZHQJIXmM2m52B1fZQoaAZoCWgPQwgpyxDHOkdwQJSGlFKUaBVL4GgWR0CSF8j94u9OdX2UKGgGaAloD0MI662BrZJ2b0CUhpRSlGgVS8xoFkdAkhgJAD7qIXV9lChoBmgJaA9DCFxaDYk7d3FAlIaUUpRoFUvUaBZHQJIYKWAwwkB1fZQoaAZoCWgPQwj3PlWFxvtwQJSGlFKUaBVL7mgWR0CSGF73wkPddX2UKGgGaAloD0MIayv2lx28cUCUhpRSlGgVS+hoFkdAkhibgwXZXnV9lChoBmgJaA9DCOfG9IRlXnFAlIaUUpRoFUvnaBZHQJIYxxkupS91fZQoaAZoCWgPQwi6awn5YBNyQJSGlFKUaBVL7mgWR0CSGotZ3cHodX2UKGgGaAloD0MIDt3sD9TxcUCUhpRSlGgVS/RoFkdAkhrllGwzL3V9lChoBmgJaA9DCF2o/Gt5a3FAlIaUUpRoFUvSaBZHQJIa6SW7e2x1fZQoaAZoCWgPQwgFacaiqSNxQJSGlFKUaBVLxGgWR0CSGzqPwNLEdX2UKGgGaAloD0MI2jf3Vw95c0CUhpRSlGgVS/RoFkdAkht5gTh5xHV9lChoBmgJaA9DCMgkI2dhb3FAlIaUUpRoFUvzaBZHQJIcQvPC2tx1fZQoaAZoCWgPQwhKtrqcUl9zQJSGlFKUaBVL4mgWR0CSHEKaoddWdX2UKGgGaAloD0MI1Qj9TD1QcECUhpRSlGgVS79oFkdAkhzMOCoS+XV9lChoBmgJaA9DCA/Tvrm/bnJAlIaUUpRoFUv4aBZHQJIdFOWSlnB1fZQoaAZoCWgPQwhsCI7LODBvQJSGlFKUaBVLx2gWR0CSHkTB68g7dX2UKGgGaAloD0MIoIzxYXagcECUhpRSlGgVS9hoFkdAkh5+glF+eHV9lChoBmgJaA9DCPYINUOq3XBAlIaUUpRoFUvWaBZHQJIekP5HmRx1fZQoaAZoCWgPQwiSsdr8vzFwQJSGlFKUaBVLymgWR0CSHrY5T6zmdX2UKGgGaAloD0MIhlrTvOOTbUCUhpRSlGgVS8xoFkdAkh8msmv4d3V9lChoBmgJaA9DCEXZW8p5UXNAlIaUUpRoFUvpaBZHQJIfaS1Vo6F1fZQoaAZoCWgPQwgAVdy4BQhwQJSGlFKUaBVL7GgWR0CSH+a6BiCrdX2UKGgGaAloD0MIqaPjaqQPckCUhpRSlGgVS81oFkdAkiEsqjJuEXV9lChoBmgJaA9DCPKwUGsaxm5AlIaUUpRoFUvaaBZHQJIhmoVEd/91fZQoaAZoCWgPQwi6o//lWkNyQJSGlFKUaBVL02gWR0CSIbI5YHPedX2UKGgGaAloD0MInS0gtN44ckCUhpRSlGgVS/ZoFkdAkiIe5vtMPHV9lChoBmgJaA9DCGh4swbvwm9AlIaUUpRoFUvFaBZHQJIiTggow251ZS4="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 310,
99
+ "n_steps": 1024,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.99,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.8,
104
+ "max_grad_norm": 0.5,
105
+ "batch_size": 128,
106
+ "n_epochs": 5,
107
+ "clip_range": {
108
+ ":type:": "<class 'function'>",
109
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
110
+ },
111
+ "clip_range_vf": null,
112
+ "normalize_advantage": true,
113
+ "target_kl": null
114
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:067a36f2eae61d26078b7542bea3fa1d01f1cc6a5e4b834fe08af476b0590fcd
3
+ size 79469
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02fa50d816ba7dd01fe4f55e77968c317759e596fc5c2a85042b9108b31862ed
3
+ size 40937
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:297a05a4e8a5e3d6ade2f1b34de664e1f03f71979ab07d04a63c49a94f6d4dfa
3
+ size 234330
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 274.785835309866, "std_reward": 22.433743285560215, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T02:02:18.996757"}