saeedHedayatian
commited on
Commit
•
e8dafcf
1
Parent(s):
77f9bbd
First commit
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +114 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 274.79 +/- 22.43
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9b82294710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9b822947a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9b82294830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9b822948c0>", "_build": "<function ActorCriticPolicy._build at 0x7f9b82294950>", "forward": "<function ActorCriticPolicy.forward at 0x7f9b822949e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9b82294a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9b82294b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9b82294b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9b82294c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9b82294cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9b822e6420>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVcAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCdmaUXZQoS0BLIEsgSxBljAJwaZRdlChLQEsgSyBLEGV1YXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [{"vf": [64, 32, 32, 16], "pi": [64, 32, 32, 16]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651714358.1590164, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIA9Jj0UXL26abcFM4TpPTDldmq5asCqswAAgD8AAIA/zaXWvB+6l7slH5Y8G8emPMqN9LwFYow9AACAPwAAgD/NDp++k287P3fGJr5JYvO+f6yzvgDQ9zwAAAAAAAAAAE3nGD3bRHg/IIG1PLGPHr+RGGY9DudsPAAAAAAAAAAADdk1vmQ2gD6SRV4+p9WOvrZU+rxinxQ8AAAAAAAAAADm9jK+b5igPm5qgj79Dq6+yS05Ot0fuz0AAAAAAAAAAACHvj0AeUg/w/bZPW+oGL/6zXg9qhESvQAAAAAAAAAATWu1PbhctDrirna89HsfPYoBGDxmrAM+AAAAAAAAAAAaz2M9mSWZP2LTXz4X1Rm/KJ1MPfqE9j0AAAAAAAAAAM0iQjz2xH26PTibPco6ozwzBou7WluNPQAAgD8AAIA/je3dPcP5F7rI7p+zz+44r6kIybrKP7kzAACAPwAAgD/zz5M9w11uugXd6rvigMo08WP/up2nLrQAAIA/AAAAAA3yPj5joTI9FWw5voFrhL63Iry3H9HFvQAAAAAAAAAAQBNbvlG+lD7DBMc+uuiTvjG4wTtSlMU9AAAAAAAAAAAAfio86ACWPVi3Yjz1nWC+rujuuzjD8TwAAAAAAAAAAGb8J767gGU/7ZCWviQW+L6674i+9aD0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlzldFhOWb0CUhpRSlIwBbJRL14wBdJRHQJHgrWAf+0h1fZQoaAZoCWgPQwg58dWOIgdwQJSGlFKUaBVLy2gWR0CR4XilzltCdX2UKGgGaAloD0MImUhpNg/sbkCUhpRSlGgVS9doFkdAkeHGhufmLnV9lChoBmgJaA9DCP0QGyxcgHFAlIaUUpRoFUvjaBZHQJHh2H6/IsB1fZQoaAZoCWgPQwiSrpl8c0NwQJSGlFKUaBVL42gWR0CR4f8WsRxtdX2UKGgGaAloD0MIGF+0x8s9c0CUhpRSlGgVS/1oFkdAkeIe/pMYdnV9lChoBmgJaA9DCAZKCiyAVnBAlIaUUpRoFUvzaBZHQJHjCN2ki2V1fZQoaAZoCWgPQwgDeAskaExxQJSGlFKUaBVL82gWR0CR46n1FpfydX2UKGgGaAloD0MIOQzmrxCVcUCUhpRSlGgVS9JoFkdAkeWUX531SXV9lChoBmgJaA9DCLcm3ZbIEHNAlIaUUpRoFU0BAWgWR0CR5j04R28qdX2UKGgGaAloD0MIstXllADqbkCUhpRSlGgVS9poFkdAkeZIy0rsjXV9lChoBmgJaA9DCNoc5zbhEHJAlIaUUpRoFU0DAWgWR0CR5xq+rU9ZdX2UKGgGaAloD0MIrwlpjQF/cUCUhpRSlGgVS8toFkdAkedi8an753V9lChoBmgJaA9DCEI/U6+bHXNAlIaUUpRoFU0KAWgWR0CR55G9HtngdX2UKGgGaAloD0MIf6ZetwhvckCUhpRSlGgVS+hoFkdAkeggmiQDFXV9lChoBmgJaA9DCANd+wJ6tHBAlIaUUpRoFUvHaBZHQJHoM0aZQYV1fZQoaAZoCWgPQwhOt+wQP9lxQJSGlFKUaBVL4mgWR0CR6EsTFl06dX2UKGgGaAloD0MIuHNhpBescECUhpRSlGgVS81oFkdAkeilJpWV/3V9lChoBmgJaA9DCK36XG1FuXJAlIaUUpRoFUvgaBZHQJHpSaw2VFB1fZQoaAZoCWgPQwhZpfRMr+RwQJSGlFKUaBVL6GgWR0CR6a8WsRxtdX2UKGgGaAloD0MILEZday+CcUCUhpRSlGgVS+toFkdAkenmqT8pC3V9lChoBmgJaA9DCPQ2NjuShXJAlIaUUpRoFUvzaBZHQJHrAx46fap1fZQoaAZoCWgPQwhrRDAOriVzQJSGlFKUaBVL52gWR0CR7Vk+5e7ddX2UKGgGaAloD0MISiandkaZcUCUhpRSlGgVS8doFkdAke4LayrxRXV9lChoBmgJaA9DCJkqGJWUTHFAlIaUUpRoFUvnaBZHQJHuGSU1Q691fZQoaAZoCWgPQwg4LuOmhtBxQJSGlFKUaBVL6GgWR0CR7hhvR7Z4dX2UKGgGaAloD0MI/RAbLJynYECUhpRSlGgVTegDaBZHQJIDTzcynDR1fZQoaAZoCWgPQwgGZ/D3i3VuQJSGlFKUaBVL52gWR0CSA7dlNDc/dX2UKGgGaAloD0MI0lJ5O0JJckCUhpRSlGgVS9loFkdAkgRBikO7QXV9lChoBmgJaA9DCK01lNpLPnNAlIaUUpRoFUv2aBZHQJIEoidJ8OV1fZQoaAZoCWgPQwi3m+Cbpj9zQJSGlFKUaBVL4WgWR0CSBLD1GsmwdX2UKGgGaAloD0MIWFTE6SR0c0CUhpRSlGgVS/NoFkdAkgUpYgaFVXV9lChoBmgJaA9DCPxW68RljG1AlIaUUpRoFUvWaBZHQJIFYTakAPx1fZQoaAZoCWgPQwjC9pMxvmBqQJSGlFKUaBVNfwFoFkdAkgVpKe05VHV9lChoBmgJaA9DCHJNgcxOkm9AlIaUUpRoFUvdaBZHQJIF77cfvF51fZQoaAZoCWgPQwglP+JXLBNzQJSGlFKUaBVNAQFoFkdAkgX/eLvTgHV9lChoBmgJaA9DCG77HvVXNHJAlIaUUpRoFUvtaBZHQJIGjeFcpsp1fZQoaAZoCWgPQwgHB3sTQ0hEQJSGlFKUaBVLdGgWR0CSB7ZLZi/gdX2UKGgGaAloD0MICYm0jT8vckCUhpRSlGgVTQIBaBZHQJIISbb1yvN1fZQoaAZoCWgPQwhPBHEezlRuQJSGlFKUaBVLz2gWR0CSCLtihFmWdX2UKGgGaAloD0MIzuDvFzNRcECUhpRSlGgVS75oFkdAkgjN2xIJ7nV9lChoBmgJaA9DCD4jERrBS3FAlIaUUpRoFUvLaBZHQJIJ5CTlkpZ1fZQoaAZoCWgPQwgO2xZl9iNxQJSGlFKUaBVL5GgWR0CSCfsImgJ1dX2UKGgGaAloD0MI4UIewc0gcECUhpRSlGgVS+VoFkdAkgn4na37UHV9lChoBmgJaA9DCP0yGCMSp3BAlIaUUpRoFUvgaBZHQJIKLZWaMJh1fZQoaAZoCWgPQwhPPj225UhwQJSGlFKUaBVLvWgWR0CSCvnYxtYTdX2UKGgGaAloD0MIeVc9YB44bkCUhpRSlGgVS+NoFkdAkgt5bhWHUXV9lChoBmgJaA9DCAMLYMqAE3BAlIaUUpRoFUv0aBZHQJIMgfuCwr11fZQoaAZoCWgPQwgs8uuHGJdyQJSGlFKUaBVNCAFoFkdAkgydT987ZHV9lChoBmgJaA9DCJ/KaU8J83BAlIaUUpRoFUvJaBZHQJIMuzNUwSJ1fZQoaAZoCWgPQwi2aWyvRUBwQJSGlFKUaBVL6mgWR0CSDQm16Vt5dX2UKGgGaAloD0MI+dueILH5cECUhpRSlGgVS+poFkdAkg0Z4bCJoHV9lChoBmgJaA9DCDWbx2EwhHJAlIaUUpRoFU0BAWgWR0CSDSZ3LV4HdX2UKGgGaAloD0MIYcQ+ARQ9cECUhpRSlGgVS8ZoFkdAkg465LAYYXV9lChoBmgJaA9DCGniHeDJ2m9AlIaUUpRoFUvdaBZHQJIOW5y2hIx1fZQoaAZoCWgPQwjRIAVPIdxyQJSGlFKUaBVL+GgWR0CSEEfXf642dX2UKGgGaAloD0MIpu7KLhjDbUCUhpRSlGgVS9NoFkdAkhCqasp5NXV9lChoBmgJaA9DCNm0UgjkwXFAlIaUUpRoFUu3aBZHQJIQta+vhZR1fZQoaAZoCWgPQwhCmUaTizRxQJSGlFKUaBVL4GgWR0CSEMww0wajdX2UKGgGaAloD0MIObUzTG3Ub0CUhpRSlGgVS+toFkdAkhFE/GEPD3V9lChoBmgJaA9DCNUHkncO4G9AlIaUUpRoFUu9aBZHQJIRcLUkOZt1fZQoaAZoCWgPQwi54XfTLeNvQJSGlFKUaBVL8mgWR0CSEXmz0HyFdX2UKGgGaAloD0MIM6fLYmI0ckCUhpRSlGgVTRsBaBZHQJIRk1sLv1F1fZQoaAZoCWgPQwjeO2pMSG5xQJSGlFKUaBVLvmgWR0CSEvF10T11dX2UKGgGaAloD0MIUmLX9jZRckCUhpRSlGgVS8FoFkdAkhMZy2hIv3V9lChoBmgJaA9DCIMWEjD6kXFAlIaUUpRoFUvfaBZHQJITswblzU91fZQoaAZoCWgPQwjVdhN8Ez1zQJSGlFKUaBVL82gWR0CSFDzjFQ2udX2UKGgGaAloD0MIIQTkS6g/c0CUhpRSlGgVTQEBaBZHQJIUk9Mbm2d1fZQoaAZoCWgPQwgaGk8EsYlxQJSGlFKUaBVLzWgWR0CSFQGoaUA1dX2UKGgGaAloD0MId7temuJhcUCUhpRSlGgVS9ZoFkdAkhUmLtNSInV9lChoBmgJaA9DCD8cJES5WXFAlIaUUpRoFU0CAWgWR0CSFUzUqhDgdX2UKGgGaAloD0MImODUB5JTcECUhpRSlGgVS8toFkdAkharK/20zHV9lChoBmgJaA9DCL5ojxdSw3JAlIaUUpRoFUvdaBZHQJIXmM2m52B1fZQoaAZoCWgPQwgpyxDHOkdwQJSGlFKUaBVL4GgWR0CSF8j94u9OdX2UKGgGaAloD0MI662BrZJ2b0CUhpRSlGgVS8xoFkdAkhgJAD7qIXV9lChoBmgJaA9DCFxaDYk7d3FAlIaUUpRoFUvUaBZHQJIYKWAwwkB1fZQoaAZoCWgPQwj3PlWFxvtwQJSGlFKUaBVL7mgWR0CSGF73wkPddX2UKGgGaAloD0MIayv2lx28cUCUhpRSlGgVS+hoFkdAkhibgwXZXnV9lChoBmgJaA9DCOfG9IRlXnFAlIaUUpRoFUvnaBZHQJIYxxkupS91fZQoaAZoCWgPQwi6awn5YBNyQJSGlFKUaBVL7mgWR0CSGotZ3cHodX2UKGgGaAloD0MIDt3sD9TxcUCUhpRSlGgVS/RoFkdAkhrllGwzL3V9lChoBmgJaA9DCF2o/Gt5a3FAlIaUUpRoFUvSaBZHQJIa6SW7e2x1fZQoaAZoCWgPQwgFacaiqSNxQJSGlFKUaBVLxGgWR0CSGzqPwNLEdX2UKGgGaAloD0MI2jf3Vw95c0CUhpRSlGgVS/RoFkdAkht5gTh5xHV9lChoBmgJaA9DCMgkI2dhb3FAlIaUUpRoFUvzaBZHQJIcQvPC2tx1fZQoaAZoCWgPQwhKtrqcUl9zQJSGlFKUaBVL4mgWR0CSHEKaoddWdX2UKGgGaAloD0MI1Qj9TD1QcECUhpRSlGgVS79oFkdAkhzMOCoS+XV9lChoBmgJaA9DCA/Tvrm/bnJAlIaUUpRoFUv4aBZHQJIdFOWSlnB1fZQoaAZoCWgPQwhsCI7LODBvQJSGlFKUaBVLx2gWR0CSHkTB68g7dX2UKGgGaAloD0MIoIzxYXagcECUhpRSlGgVS9hoFkdAkh5+glF+eHV9lChoBmgJaA9DCPYINUOq3XBAlIaUUpRoFUvWaBZHQJIekP5HmRx1fZQoaAZoCWgPQwiSsdr8vzFwQJSGlFKUaBVLymgWR0CSHrY5T6zmdX2UKGgGaAloD0MIhlrTvOOTbUCUhpRSlGgVS8xoFkdAkh8msmv4d3V9lChoBmgJaA9DCEXZW8p5UXNAlIaUUpRoFUvpaBZHQJIfaS1Vo6F1fZQoaAZoCWgPQwgAVdy4BQhwQJSGlFKUaBVL7GgWR0CSH+a6BiCrdX2UKGgGaAloD0MIqaPjaqQPckCUhpRSlGgVS81oFkdAkiEsqjJuEXV9lChoBmgJaA9DCPKwUGsaxm5AlIaUUpRoFUvaaBZHQJIhmoVEd/91fZQoaAZoCWgPQwi6o//lWkNyQJSGlFKUaBVL02gWR0CSIbI5YHPedX2UKGgGaAloD0MInS0gtN44ckCUhpRSlGgVS/ZoFkdAkiIe5vtMPHV9lChoBmgJaA9DCGh4swbvwm9AlIaUUpRoFUvFaBZHQJIiTggow251ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.99, "ent_coef": 0.0, "vf_coef": 0.8, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b57dc1d8a445425469273a05e8df0cdb697e2de2eef59da0813f1d502164f49
|
3 |
+
size 136948
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9b82294710>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9b822947a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9b82294830>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9b822948c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9b82294950>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9b822949e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9b82294a70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9b82294b00>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9b82294b90>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9b82294c20>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9b82294cb0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9b822e6420>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVcAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCdmaUXZQoS0BLIEsgSxBljAJwaZRdlChLQEsgSyBLEGV1YXUu",
|
25 |
+
"activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
|
26 |
+
"net_arch": [
|
27 |
+
{
|
28 |
+
"vf": [
|
29 |
+
64,
|
30 |
+
32,
|
31 |
+
32,
|
32 |
+
16
|
33 |
+
],
|
34 |
+
"pi": [
|
35 |
+
64,
|
36 |
+
32,
|
37 |
+
32,
|
38 |
+
16
|
39 |
+
]
|
40 |
+
}
|
41 |
+
]
|
42 |
+
},
|
43 |
+
"observation_space": {
|
44 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
45 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
46 |
+
"dtype": "float32",
|
47 |
+
"_shape": [
|
48 |
+
8
|
49 |
+
],
|
50 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
51 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
52 |
+
"bounded_below": "[False False False False False False False False]",
|
53 |
+
"bounded_above": "[False False False False False False False False]",
|
54 |
+
"_np_random": null
|
55 |
+
},
|
56 |
+
"action_space": {
|
57 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
58 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
59 |
+
"n": 4,
|
60 |
+
"_shape": [],
|
61 |
+
"dtype": "int64",
|
62 |
+
"_np_random": null
|
63 |
+
},
|
64 |
+
"n_envs": 16,
|
65 |
+
"num_timesteps": 1015808,
|
66 |
+
"_total_timesteps": 1000000,
|
67 |
+
"_num_timesteps_at_start": 0,
|
68 |
+
"seed": null,
|
69 |
+
"action_noise": null,
|
70 |
+
"start_time": 1651714358.1590164,
|
71 |
+
"learning_rate": 0.0007,
|
72 |
+
"tensorboard_log": null,
|
73 |
+
"lr_schedule": {
|
74 |
+
":type:": "<class 'function'>",
|
75 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
76 |
+
},
|
77 |
+
"_last_obs": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIA9Jj0UXL26abcFM4TpPTDldmq5asCqswAAgD8AAIA/zaXWvB+6l7slH5Y8G8emPMqN9LwFYow9AACAPwAAgD/NDp++k287P3fGJr5JYvO+f6yzvgDQ9zwAAAAAAAAAAE3nGD3bRHg/IIG1PLGPHr+RGGY9DudsPAAAAAAAAAAADdk1vmQ2gD6SRV4+p9WOvrZU+rxinxQ8AAAAAAAAAADm9jK+b5igPm5qgj79Dq6+yS05Ot0fuz0AAAAAAAAAAACHvj0AeUg/w/bZPW+oGL/6zXg9qhESvQAAAAAAAAAATWu1PbhctDrirna89HsfPYoBGDxmrAM+AAAAAAAAAAAaz2M9mSWZP2LTXz4X1Rm/KJ1MPfqE9j0AAAAAAAAAAM0iQjz2xH26PTibPco6ozwzBou7WluNPQAAgD8AAIA/je3dPcP5F7rI7p+zz+44r6kIybrKP7kzAACAPwAAgD/zz5M9w11uugXd6rvigMo08WP/up2nLrQAAIA/AAAAAA3yPj5joTI9FWw5voFrhL63Iry3H9HFvQAAAAAAAAAAQBNbvlG+lD7DBMc+uuiTvjG4wTtSlMU9AAAAAAAAAAAAfio86ACWPVi3Yjz1nWC+rujuuzjD8TwAAAAAAAAAAGb8J767gGU/7ZCWviQW+L6674i+9aD0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
80 |
+
},
|
81 |
+
"_last_episode_starts": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
84 |
+
},
|
85 |
+
"_last_original_obs": null,
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": false,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": -0.015808000000000044,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVKRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlzldFhOWb0CUhpRSlIwBbJRL14wBdJRHQJHgrWAf+0h1fZQoaAZoCWgPQwg58dWOIgdwQJSGlFKUaBVLy2gWR0CR4XilzltCdX2UKGgGaAloD0MImUhpNg/sbkCUhpRSlGgVS9doFkdAkeHGhufmLnV9lChoBmgJaA9DCP0QGyxcgHFAlIaUUpRoFUvjaBZHQJHh2H6/IsB1fZQoaAZoCWgPQwiSrpl8c0NwQJSGlFKUaBVL42gWR0CR4f8WsRxtdX2UKGgGaAloD0MIGF+0x8s9c0CUhpRSlGgVS/1oFkdAkeIe/pMYdnV9lChoBmgJaA9DCAZKCiyAVnBAlIaUUpRoFUvzaBZHQJHjCN2ki2V1fZQoaAZoCWgPQwgDeAskaExxQJSGlFKUaBVL82gWR0CR46n1FpfydX2UKGgGaAloD0MIOQzmrxCVcUCUhpRSlGgVS9JoFkdAkeWUX531SXV9lChoBmgJaA9DCLcm3ZbIEHNAlIaUUpRoFU0BAWgWR0CR5j04R28qdX2UKGgGaAloD0MIstXllADqbkCUhpRSlGgVS9poFkdAkeZIy0rsjXV9lChoBmgJaA9DCNoc5zbhEHJAlIaUUpRoFU0DAWgWR0CR5xq+rU9ZdX2UKGgGaAloD0MIrwlpjQF/cUCUhpRSlGgVS8toFkdAkedi8an753V9lChoBmgJaA9DCEI/U6+bHXNAlIaUUpRoFU0KAWgWR0CR55G9HtngdX2UKGgGaAloD0MIf6ZetwhvckCUhpRSlGgVS+hoFkdAkeggmiQDFXV9lChoBmgJaA9DCANd+wJ6tHBAlIaUUpRoFUvHaBZHQJHoM0aZQYV1fZQoaAZoCWgPQwhOt+wQP9lxQJSGlFKUaBVL4mgWR0CR6EsTFl06dX2UKGgGaAloD0MIuHNhpBescECUhpRSlGgVS81oFkdAkeilJpWV/3V9lChoBmgJaA9DCK36XG1FuXJAlIaUUpRoFUvgaBZHQJHpSaw2VFB1fZQoaAZoCWgPQwhZpfRMr+RwQJSGlFKUaBVL6GgWR0CR6a8WsRxtdX2UKGgGaAloD0MILEZday+CcUCUhpRSlGgVS+toFkdAkenmqT8pC3V9lChoBmgJaA9DCPQ2NjuShXJAlIaUUpRoFUvzaBZHQJHrAx46fap1fZQoaAZoCWgPQwhrRDAOriVzQJSGlFKUaBVL52gWR0CR7Vk+5e7ddX2UKGgGaAloD0MISiandkaZcUCUhpRSlGgVS8doFkdAke4LayrxRXV9lChoBmgJaA9DCJkqGJWUTHFAlIaUUpRoFUvnaBZHQJHuGSU1Q691fZQoaAZoCWgPQwg4LuOmhtBxQJSGlFKUaBVL6GgWR0CR7hhvR7Z4dX2UKGgGaAloD0MI/RAbLJynYECUhpRSlGgVTegDaBZHQJIDTzcynDR1fZQoaAZoCWgPQwgGZ/D3i3VuQJSGlFKUaBVL52gWR0CSA7dlNDc/dX2UKGgGaAloD0MI0lJ5O0JJckCUhpRSlGgVS9loFkdAkgRBikO7QXV9lChoBmgJaA9DCK01lNpLPnNAlIaUUpRoFUv2aBZHQJIEoidJ8OV1fZQoaAZoCWgPQwi3m+Cbpj9zQJSGlFKUaBVL4WgWR0CSBLD1GsmwdX2UKGgGaAloD0MIWFTE6SR0c0CUhpRSlGgVS/NoFkdAkgUpYgaFVXV9lChoBmgJaA9DCPxW68RljG1AlIaUUpRoFUvWaBZHQJIFYTakAPx1fZQoaAZoCWgPQwjC9pMxvmBqQJSGlFKUaBVNfwFoFkdAkgVpKe05VHV9lChoBmgJaA9DCHJNgcxOkm9AlIaUUpRoFUvdaBZHQJIF77cfvF51fZQoaAZoCWgPQwglP+JXLBNzQJSGlFKUaBVNAQFoFkdAkgX/eLvTgHV9lChoBmgJaA9DCG77HvVXNHJAlIaUUpRoFUvtaBZHQJIGjeFcpsp1fZQoaAZoCWgPQwgHB3sTQ0hEQJSGlFKUaBVLdGgWR0CSB7ZLZi/gdX2UKGgGaAloD0MICYm0jT8vckCUhpRSlGgVTQIBaBZHQJIISbb1yvN1fZQoaAZoCWgPQwhPBHEezlRuQJSGlFKUaBVLz2gWR0CSCLtihFmWdX2UKGgGaAloD0MIzuDvFzNRcECUhpRSlGgVS75oFkdAkgjN2xIJ7nV9lChoBmgJaA9DCD4jERrBS3FAlIaUUpRoFUvLaBZHQJIJ5CTlkpZ1fZQoaAZoCWgPQwgO2xZl9iNxQJSGlFKUaBVL5GgWR0CSCfsImgJ1dX2UKGgGaAloD0MI4UIewc0gcECUhpRSlGgVS+VoFkdAkgn4na37UHV9lChoBmgJaA9DCP0yGCMSp3BAlIaUUpRoFUvgaBZHQJIKLZWaMJh1fZQoaAZoCWgPQwhPPj225UhwQJSGlFKUaBVLvWgWR0CSCvnYxtYTdX2UKGgGaAloD0MIeVc9YB44bkCUhpRSlGgVS+NoFkdAkgt5bhWHUXV9lChoBmgJaA9DCAMLYMqAE3BAlIaUUpRoFUv0aBZHQJIMgfuCwr11fZQoaAZoCWgPQwgs8uuHGJdyQJSGlFKUaBVNCAFoFkdAkgydT987ZHV9lChoBmgJaA9DCJ/KaU8J83BAlIaUUpRoFUvJaBZHQJIMuzNUwSJ1fZQoaAZoCWgPQwi2aWyvRUBwQJSGlFKUaBVL6mgWR0CSDQm16Vt5dX2UKGgGaAloD0MI+dueILH5cECUhpRSlGgVS+poFkdAkg0Z4bCJoHV9lChoBmgJaA9DCDWbx2EwhHJAlIaUUpRoFU0BAWgWR0CSDSZ3LV4HdX2UKGgGaAloD0MIYcQ+ARQ9cECUhpRSlGgVS8ZoFkdAkg465LAYYXV9lChoBmgJaA9DCGniHeDJ2m9AlIaUUpRoFUvdaBZHQJIOW5y2hIx1fZQoaAZoCWgPQwjRIAVPIdxyQJSGlFKUaBVL+GgWR0CSEEfXf642dX2UKGgGaAloD0MIpu7KLhjDbUCUhpRSlGgVS9NoFkdAkhCqasp5NXV9lChoBmgJaA9DCNm0UgjkwXFAlIaUUpRoFUu3aBZHQJIQta+vhZR1fZQoaAZoCWgPQwhCmUaTizRxQJSGlFKUaBVL4GgWR0CSEMww0wajdX2UKGgGaAloD0MIObUzTG3Ub0CUhpRSlGgVS+toFkdAkhFE/GEPD3V9lChoBmgJaA9DCNUHkncO4G9AlIaUUpRoFUu9aBZHQJIRcLUkOZt1fZQoaAZoCWgPQwi54XfTLeNvQJSGlFKUaBVL8mgWR0CSEXmz0HyFdX2UKGgGaAloD0MIM6fLYmI0ckCUhpRSlGgVTRsBaBZHQJIRk1sLv1F1fZQoaAZoCWgPQwjeO2pMSG5xQJSGlFKUaBVLvmgWR0CSEvF10T11dX2UKGgGaAloD0MIUmLX9jZRckCUhpRSlGgVS8FoFkdAkhMZy2hIv3V9lChoBmgJaA9DCIMWEjD6kXFAlIaUUpRoFUvfaBZHQJITswblzU91fZQoaAZoCWgPQwjVdhN8Ez1zQJSGlFKUaBVL82gWR0CSFDzjFQ2udX2UKGgGaAloD0MIIQTkS6g/c0CUhpRSlGgVTQEBaBZHQJIUk9Mbm2d1fZQoaAZoCWgPQwgaGk8EsYlxQJSGlFKUaBVLzWgWR0CSFQGoaUA1dX2UKGgGaAloD0MId7temuJhcUCUhpRSlGgVS9ZoFkdAkhUmLtNSInV9lChoBmgJaA9DCD8cJES5WXFAlIaUUpRoFU0CAWgWR0CSFUzUqhDgdX2UKGgGaAloD0MImODUB5JTcECUhpRSlGgVS8toFkdAkharK/20zHV9lChoBmgJaA9DCL5ojxdSw3JAlIaUUpRoFUvdaBZHQJIXmM2m52B1fZQoaAZoCWgPQwgpyxDHOkdwQJSGlFKUaBVL4GgWR0CSF8j94u9OdX2UKGgGaAloD0MI662BrZJ2b0CUhpRSlGgVS8xoFkdAkhgJAD7qIXV9lChoBmgJaA9DCFxaDYk7d3FAlIaUUpRoFUvUaBZHQJIYKWAwwkB1fZQoaAZoCWgPQwj3PlWFxvtwQJSGlFKUaBVL7mgWR0CSGF73wkPddX2UKGgGaAloD0MIayv2lx28cUCUhpRSlGgVS+hoFkdAkhibgwXZXnV9lChoBmgJaA9DCOfG9IRlXnFAlIaUUpRoFUvnaBZHQJIYxxkupS91fZQoaAZoCWgPQwi6awn5YBNyQJSGlFKUaBVL7mgWR0CSGotZ3cHodX2UKGgGaAloD0MIDt3sD9TxcUCUhpRSlGgVS/RoFkdAkhrllGwzL3V9lChoBmgJaA9DCF2o/Gt5a3FAlIaUUpRoFUvSaBZHQJIa6SW7e2x1fZQoaAZoCWgPQwgFacaiqSNxQJSGlFKUaBVLxGgWR0CSGzqPwNLEdX2UKGgGaAloD0MI2jf3Vw95c0CUhpRSlGgVS/RoFkdAkht5gTh5xHV9lChoBmgJaA9DCMgkI2dhb3FAlIaUUpRoFUvzaBZHQJIcQvPC2tx1fZQoaAZoCWgPQwhKtrqcUl9zQJSGlFKUaBVL4mgWR0CSHEKaoddWdX2UKGgGaAloD0MI1Qj9TD1QcECUhpRSlGgVS79oFkdAkhzMOCoS+XV9lChoBmgJaA9DCA/Tvrm/bnJAlIaUUpRoFUv4aBZHQJIdFOWSlnB1fZQoaAZoCWgPQwhsCI7LODBvQJSGlFKUaBVLx2gWR0CSHkTB68g7dX2UKGgGaAloD0MIoIzxYXagcECUhpRSlGgVS9hoFkdAkh5+glF+eHV9lChoBmgJaA9DCPYINUOq3XBAlIaUUpRoFUvWaBZHQJIekP5HmRx1fZQoaAZoCWgPQwiSsdr8vzFwQJSGlFKUaBVLymgWR0CSHrY5T6zmdX2UKGgGaAloD0MIhlrTvOOTbUCUhpRSlGgVS8xoFkdAkh8msmv4d3V9lChoBmgJaA9DCEXZW8p5UXNAlIaUUpRoFUvpaBZHQJIfaS1Vo6F1fZQoaAZoCWgPQwgAVdy4BQhwQJSGlFKUaBVL7GgWR0CSH+a6BiCrdX2UKGgGaAloD0MIqaPjaqQPckCUhpRSlGgVS81oFkdAkiEsqjJuEXV9lChoBmgJaA9DCPKwUGsaxm5AlIaUUpRoFUvaaBZHQJIhmoVEd/91fZQoaAZoCWgPQwi6o//lWkNyQJSGlFKUaBVL02gWR0CSIbI5YHPedX2UKGgGaAloD0MInS0gtN44ckCUhpRSlGgVS/ZoFkdAkiIe5vtMPHV9lChoBmgJaA9DCGh4swbvwm9AlIaUUpRoFUvFaBZHQJIiTggow251ZS4="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 310,
|
99 |
+
"n_steps": 1024,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.99,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.8,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"batch_size": 128,
|
106 |
+
"n_epochs": 5,
|
107 |
+
"clip_range": {
|
108 |
+
":type:": "<class 'function'>",
|
109 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
110 |
+
},
|
111 |
+
"clip_range_vf": null,
|
112 |
+
"normalize_advantage": true,
|
113 |
+
"target_kl": null
|
114 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067a36f2eae61d26078b7542bea3fa1d01f1cc6a5e4b834fe08af476b0590fcd
|
3 |
+
size 79469
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02fa50d816ba7dd01fe4f55e77968c317759e596fc5c2a85042b9108b31862ed
|
3 |
+
size 40937
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:297a05a4e8a5e3d6ade2f1b34de664e1f03f71979ab07d04a63c49a94f6d4dfa
|
3 |
+
size 234330
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 274.785835309866, "std_reward": 22.433743285560215, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T02:02:18.996757"}
|