Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,3 +1,67 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# LLaVA-Phi Model
|
3 |
+
|
4 |
+
This is a vision-language model based on Microsoft's Phi-1.5 architecture with CLIP for image processing capabilities.
|
5 |
+
|
6 |
+
## Model Description
|
7 |
+
|
8 |
+
- **Base Model**: Microsoft Phi-1.5
|
9 |
+
- **Vision Encoder**: CLIP ViT-B/32
|
10 |
+
- **Training**: QLoRA fine-tuning
|
11 |
+
- **Dataset**: Instruct 150K
|
12 |
+
|
13 |
+
## Usage
|
14 |
+
|
15 |
+
```python
|
16 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
|
17 |
+
import torch
|
18 |
+
from PIL import Image
|
19 |
+
|
20 |
+
# Load model and tokenizer
|
21 |
+
model = AutoModelForCausalLM.from_pretrained("sagar007/Lava_phi")
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("sagar007/Lava_phi")
|
23 |
+
processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
24 |
+
|
25 |
+
# For text
|
26 |
+
def generate_text(prompt):
|
27 |
+
inputs = tokenizer(f"human: {prompt}\ngpt:", return_tensors="pt")
|
28 |
+
outputs = model.generate(**inputs, max_new_tokens=128)
|
29 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
30 |
+
|
31 |
+
# For images
|
32 |
+
def process_image_and_prompt(image_path, prompt):
|
33 |
+
image = Image.open(image_path)
|
34 |
+
image_tensor = processor(images=image, return_tensors="pt").pixel_values
|
35 |
+
|
36 |
+
inputs = tokenizer(f"human: <image>\n{prompt}\ngpt:", return_tensors="pt")
|
37 |
+
outputs = model.generate(
|
38 |
+
input_ids=inputs["input_ids"],
|
39 |
+
attention_mask=inputs["attention_mask"],
|
40 |
+
images=image_tensor,
|
41 |
+
max_new_tokens=128
|
42 |
+
)
|
43 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
44 |
+
```
|
45 |
+
|
46 |
+
## Training Details
|
47 |
+
|
48 |
+
- Trained using QLoRA (Quantized Low-Rank Adaptation)
|
49 |
+
- 4-bit quantization for efficiency
|
50 |
+
- Gradient checkpointing enabled
|
51 |
+
- Mixed precision training (bfloat16)
|
52 |
+
|
53 |
+
## License
|
54 |
+
|
55 |
+
MIT License
|
56 |
+
|
57 |
+
## Citation
|
58 |
+
|
59 |
+
```bibtex
|
60 |
+
@software{llava_phi_2024,
|
61 |
+
author = {sagar007},
|
62 |
+
title = {LLaVA-Phi: Vision-Language Model},
|
63 |
+
year = {2024},
|
64 |
+
publisher = {Hugging Face},
|
65 |
+
url = {https://huggingface.co/sagar007/Lava_phi}
|
66 |
+
}
|
67 |
+
```
|