sagawa commited on
Commit
b71ae05
·
1 Parent(s): d34234b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -2
README.md CHANGED
@@ -1,6 +1,64 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
- # ZINC-t5-v2
5
 
6
- We trained T5 on SMILES from ZINC using the task of masked-language modeling (MLM). Compared to ZINC-t5, ZINC-t5-v2 uses a character-level tokenizer. This model can be used for the prediction of molecules' properties, reactions, or interactions with proteins by changing the way of finetuning.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ datasets:
4
+ - sagawa/ZINC-canonicalized
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: ZINC-deberta
9
+ results:
10
+ - task:
11
+ name: Masked Language Modeling
12
+ type: fill-mask
13
+ dataset:
14
+ name: sagawa/ZINC-canonicalized
15
+ type: sagawa/ZINC-canonicalized
16
+ metrics:
17
+ - name: Accuracy
18
+ type: accuracy
19
+ value: 0.9475839734077454
20
  ---
 
21
 
22
+ # ZINC-t5
23
+
24
+ This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/microsoft/deberta-base) on the sagawa/ZINC-canonicalized dataset.
25
+ It achieves the following results on the evaluation set:
26
+ - Loss: 0.1228
27
+ - Accuracy: 0.9476
28
+
29
+
30
+ ## Model description
31
+
32
+ We trained t5 on SMILES from ZINC using the task of masked-language modeling (MLM). Compared to PubChem-t5, PubChemC-t5-v2 uses a character-level tokenizer, and it was also trained on ZINC.
33
+
34
+
35
+ ## Intended uses & limitations
36
+
37
+ This model can be used for the prediction of molecules' properties, reactions, or interactions with proteins by changing the way of finetuning.
38
+ As an example, We finetuned this model to predict products. The model is [here](https://huggingface.co/sagawa/ZINC-t5-productpredicition), and you can use the demo [here](https://huggingface.co/spaces/sagawa/predictproduct-t5).
39
+ Using its encoder, we trained a regression model to predict a reaction yield. You can use this demo [here](https://huggingface.co/spaces/sagawa/predictyield-t5).
40
+
41
+ ## Training and evaluation data
42
+
43
+ We downloaded [ZINC data](https://drive.google.com/drive/folders/1lSPCqh31zxTVEhuiPde7W3rZG8kPgp-z) and canonicalized them using RDKit. Then, we dropped duplicates. The total number of data is 22992522, and they were randomly split into train:validation=10:1.
44
+
45
+ ## Training procedure
46
+
47
+ ### Training hyperparameters
48
+
49
+ The following hyperparameters were used during training:
50
+ - learning_rate: 5e-03
51
+ - seed: 42
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - num_epochs: 10.0
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Step | Accuracy | Validation Loss |
59
+ |:-------------:|:------:|:--------:|:---------------:|
60
+ | 0.2090 | 100000 | 0.9264 | 0.1860 |
61
+ | 0.1628 | 200000 | 0.9349 | 0.1613 |
62
+ | 0.1632 | 300000 | 0.9395 | 0.1467 |
63
+ | 0.1451 | 400000 | 0.9435 | 0.1345 |
64
+ | 0.1311 | 500000 | 0.9465 | 0.1261 |