---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model-index:
- name: TinyLlamaB_alpaca_2k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: true
load_in_4bit: false
strict: false

datasets:
  - path: mhenrichsen/alpaca_2k_test
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/simple-lora-out/
hub_model_id: sahanes/TinyLlamaB_alpaca_2k

sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

```

</details><br>

# TinyLlamaB_alpaca_2k

This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2124

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.4615        | 0.08   | 1    | 1.4899          |
| 1.3853        | 0.24   | 3    | 1.4862          |
| 1.3665        | 0.48   | 6    | 1.4396          |
| 1.2677        | 0.72   | 9    | 1.3393          |
| 1.2261        | 0.96   | 12   | 1.2967          |
| 1.2513        | 1.16   | 15   | 1.2810          |
| 1.2266        | 1.4    | 18   | 1.2557          |
| 1.1349        | 1.6400 | 21   | 1.2344          |
| 1.2688        | 1.88   | 24   | 1.2275          |
| 1.1477        | 2.08   | 27   | 1.2242          |
| 1.1524        | 2.32   | 30   | 1.2217          |
| 1.1944        | 2.56   | 33   | 1.2198          |
| 1.1123        | 2.8    | 36   | 1.2134          |
| 1.1523        | 3.04   | 39   | 1.2126          |
| 1.1897        | 3.24   | 42   | 1.2102          |
| 1.1006        | 3.48   | 45   | 1.2143          |
| 1.1894        | 3.7200 | 48   | 1.2124          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1