--- library_name: transformers license: llama3 datasets: - saheedniyi/Nairaland_v1_instruct_512QA language: - en pipeline_tag: text-generation --- Excited to announce the release of *Llama3-8b-Naija_v1* a finetuned version of Meta-Llama-3-8B trained on a *Question - Answer* dataset from [Nairaland](https://www.nairaland.com/). The model was built in an attempt to "Nigerialize" Llama-3, giving it a Nigerian - like behavior. ## Model Details ### Model Description - **Developed by:** [Saheedniyi](https://linkedin.com/in/azeez-saheed) - **Language(s) (NLP):** English, Pidgin English - **License:** [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/Mozilla/Meta-Llama-3-70B-Instruct-llamafile/blob/main/Meta-Llama-3-Community-License-Agreement.txt) - **Finetuned from model [optional]:** [meta-llama/Meta-Llama-3-8B](Mozilla/Meta-Llama-3-70B-Instruct-llamafile) ### Model Sources - **[Repository](https://github.com/saheedniyi02)** - **Demo:** [Colab Notebook](https://colab.research.google.com/drive/1IGe7yR3ShU59dxVDmYOSYYxtxBYlcIcP?authuser=3) ## How to Get Started with the Model Use the code below to get started with the model. ```python #necessary installations !pip install bitsandbytes peft accelerate from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("saheedniyi/Llama3-8b-Naija_v1") model = AutoModelForCausalLM.from_pretrained("saheedniyi/Llama3-8b-Naija_v1") input_text = "What are the top locations for tourism in Nigeria?" formatted_prompt=input_text=f"### BEGIN CONVERSATION ###\n\n## User: ##\n{input_text}\n\n## Assistant: ##\n" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs.to("cuda"), max_new_tokens=512,pad_token_id=tokenizer.pad_token_id,do_sample=True,temperature=0.6,top_p=0.9,) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```