--- library_name: transformers license: llama3 datasets: - saheedniyi/Nairaland_v1_instruct_512QA language: - en pipeline_tag: text-generation --- Excited to announce the release of **Llama3-8b-Naija_v1** a finetuned version of Meta-Llama-3-8B trained on a **Question - Answer** dataset from [Nairaland](https://www.nairaland.com/). The model was built in an attempt to **"Nigerialize"** Llama-3, giving it a Nigerian - like behavior. ## Model Details ### Model Description - **Developed by:** [Saheedniyi](https://linkedin.com/in/azeez-saheed) - **Language(s) (NLP):** English, Pidgin English - **License:** [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/Mozilla/Meta-Llama-3-70B-Instruct-llamafile/blob/main/Meta-Llama-3-Community-License-Agreement.txt) - **Finetuned from model [optional]:** [meta-llama/Meta-Llama-3-8B](Mozilla/Meta-Llama-3-70B-Instruct-llamafile) ### Model Sources - **[Repository](https://github.com/saheedniyi02/Llama3-8b-Naija_v1)** - **Demo:** [Colab Notebook](https://colab.research.google.com/drive/1Fe65lZOGN7EnV10QW4jhA6oDKf4_PNvJ?usp=sharing) ## How to Get Started with the Model Use the code below to get started with the model. ```python #necessary installations !pip install bitsandbytes peft accelerate from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("saheedniyi/Llama3-8b-Naija_v1") model = AutoModelForCausalLM.from_pretrained("saheedniyi/Llama3-8b-Naija_v1") input_text = "What are the top places for tourism in Nigeria?" formatted_prompt = f"### BEGIN CONVERSATION ###\n\n## User: ##\n{input_text}\n\n## Assistant: ##\n" inputs = tokenizer(formatted_prompt, return_tensors="pt") outputs = model.generate(**inputs.to("cuda"), max_new_tokens=512,pad_token_id=tokenizer.pad_token_id,do_sample=True,temperature=0.6,top_p=0.9,) response=tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` when using the model it is important to use the chat template that the model was trained on. ``` prompt = "INPUT YOUR PROMPT HERE" formatted_prompt=input_text=f"### BEGIN CONVERSATION ###\n\n## User: ##\n{prompt}\n\n## Assistant: ##\n" ``` The model has a little tokenization issue and it's necessary to wtrite a function to clean the output to make it cleaner and more presentable. ``` def split_response(text): return text.split("### END CONVERSATION")[0] cleaned_response=split_response(response) print(cleaned_response) ``` **This issue shold be resolved in the next version of the model.**