pushing model to the Hugging Face Hub
Browse files- README.md +148 -0
- config.json +107 -0
- confusion_matrix.png +0 -0
- skops-_rlm9nbx.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sklearn
|
3 |
+
tags:
|
4 |
+
- sklearn
|
5 |
+
- skops
|
6 |
+
- tabular-classification
|
7 |
+
model_format: pickle
|
8 |
+
model_file: skops-_rlm9nbx.pkl
|
9 |
+
widget:
|
10 |
+
- structuredData:
|
11 |
+
x0:
|
12 |
+
- 1.0086665077175379
|
13 |
+
- 1.0086665077175379
|
14 |
+
- -0.9914079553041198
|
15 |
+
x1:
|
16 |
+
- -1.0086665077175376
|
17 |
+
- -1.0086665077175376
|
18 |
+
- 0.99140795530412
|
19 |
+
x10:
|
20 |
+
- -0.22650043789522045
|
21 |
+
- 1.0087085512107812
|
22 |
+
- -1.1535683034040811
|
23 |
+
x11:
|
24 |
+
- -0.3931869525722032
|
25 |
+
- -1.2502276872280191
|
26 |
+
- -0.3931869525722032
|
27 |
+
x12:
|
28 |
+
- -0.22475360373860484
|
29 |
+
- -1.2736037545187613
|
30 |
+
- -1.2736037545187613
|
31 |
+
x13:
|
32 |
+
- -0.36644465957257716
|
33 |
+
- -0.36644465957257716
|
34 |
+
- -0.36644465957257716
|
35 |
+
x14:
|
36 |
+
- -0.43989052441881077
|
37 |
+
- -1.6043722933752058
|
38 |
+
- -0.43989052441881077
|
39 |
+
x2:
|
40 |
+
- -0.5244627009562925
|
41 |
+
- -0.5244627009562925
|
42 |
+
- -0.5244627009562925
|
43 |
+
x3:
|
44 |
+
- -1.0038424733297755
|
45 |
+
- -1.0038424733297755
|
46 |
+
- 0.9961722347560998
|
47 |
+
x4:
|
48 |
+
- 1.594238352724291
|
49 |
+
- 1.594238352724291
|
50 |
+
- -0.6272587773911873
|
51 |
+
x5:
|
52 |
+
- -0.9810049179827242
|
53 |
+
- 1.0193628815402107
|
54 |
+
- 1.0193628815402107
|
55 |
+
x6:
|
56 |
+
- 0.981004917982724
|
57 |
+
- -1.019362881540211
|
58 |
+
- -1.019362881540211
|
59 |
+
x7:
|
60 |
+
- 1.901326970246757
|
61 |
+
- -0.525948464229825
|
62 |
+
- -0.525948464229825
|
63 |
+
x8:
|
64 |
+
- -1.9013269702467568
|
65 |
+
- 0.5259484642298251
|
66 |
+
- 0.5259484642298251
|
67 |
+
x9:
|
68 |
+
- -0.7015627248979232
|
69 |
+
- 0.8218167103592607
|
70 |
+
- -1.3109144990007968
|
71 |
+
---
|
72 |
+
|
73 |
+
# Model description
|
74 |
+
|
75 |
+
[More Information Needed]
|
76 |
+
|
77 |
+
## Intended uses & limitations
|
78 |
+
|
79 |
+
[More Information Needed]
|
80 |
+
|
81 |
+
## Training Procedure
|
82 |
+
|
83 |
+
[More Information Needed]
|
84 |
+
|
85 |
+
### Hyperparameters
|
86 |
+
|
87 |
+
<details>
|
88 |
+
<summary> Click to expand </summary>
|
89 |
+
|
90 |
+
| Hyperparameter | Value |
|
91 |
+
|-------------------|---------|
|
92 |
+
| C | 1.0 |
|
93 |
+
| class_weight | |
|
94 |
+
| dual | False |
|
95 |
+
| fit_intercept | True |
|
96 |
+
| intercept_scaling | 1 |
|
97 |
+
| l1_ratio | |
|
98 |
+
| max_iter | 100 |
|
99 |
+
| multi_class | auto |
|
100 |
+
| n_jobs | |
|
101 |
+
| penalty | l2 |
|
102 |
+
| random_state | |
|
103 |
+
| solver | lbfgs |
|
104 |
+
| tol | 0.0001 |
|
105 |
+
| verbose | 0 |
|
106 |
+
| warm_start | False |
|
107 |
+
|
108 |
+
</details>
|
109 |
+
|
110 |
+
### Model Plot
|
111 |
+
|
112 |
+
<style>#sk-container-id-4 {color: black;background-color: white;}#sk-container-id-4 pre{padding: 0;}#sk-container-id-4 div.sk-toggleable {background-color: white;}#sk-container-id-4 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-4 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-4 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-4 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-4 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-4 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-4 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-4 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-4 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-4 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-4 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-4 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-4 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-4 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-4 div.sk-item {position: relative;z-index: 1;}#sk-container-id-4 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-4 div.sk-item::before, #sk-container-id-4 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-4 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-4 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-4 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-4 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-4 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-4 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-4 div.sk-label-container {text-align: center;}#sk-container-id-4 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-4 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-4" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>LogisticRegression()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" checked><label for="sk-estimator-id-4" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div>
|
113 |
+
|
114 |
+
## Evaluation Results
|
115 |
+
|
116 |
+
| Metric | Value |
|
117 |
+
|-----------|----------|
|
118 |
+
| accuracy | 0.699187 |
|
119 |
+
| precision | 0.688411 |
|
120 |
+
| recall | 0.699187 |
|
121 |
+
|
122 |
+
### Confusion Matrix
|
123 |
+
|
124 |
+
![Confusion Matrix](confusion_matrix.png)
|
125 |
+
|
126 |
+
# How to Get Started with the Model
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
# Model Card Authors
|
131 |
+
|
132 |
+
This model card is written by following authors:
|
133 |
+
|
134 |
+
[More Information Needed]
|
135 |
+
|
136 |
+
# Model Card Contact
|
137 |
+
|
138 |
+
You can contact the model card authors through following channels:
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
# Citation
|
142 |
+
|
143 |
+
Below you can find information related to citation.
|
144 |
+
|
145 |
+
**BibTeX:**
|
146 |
+
```
|
147 |
+
[More Information Needed]
|
148 |
+
```
|
config.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"x0",
|
5 |
+
"x1",
|
6 |
+
"x2",
|
7 |
+
"x3",
|
8 |
+
"x4",
|
9 |
+
"x5",
|
10 |
+
"x6",
|
11 |
+
"x7",
|
12 |
+
"x8",
|
13 |
+
"x9",
|
14 |
+
"x10",
|
15 |
+
"x11",
|
16 |
+
"x12",
|
17 |
+
"x13",
|
18 |
+
"x14"
|
19 |
+
],
|
20 |
+
"environment": [
|
21 |
+
"scikit-learn=1.2.2"
|
22 |
+
],
|
23 |
+
"example_input": {
|
24 |
+
"x0": [
|
25 |
+
1.0086665077175379,
|
26 |
+
1.0086665077175379,
|
27 |
+
-0.9914079553041198
|
28 |
+
],
|
29 |
+
"x1": [
|
30 |
+
-1.0086665077175376,
|
31 |
+
-1.0086665077175376,
|
32 |
+
0.99140795530412
|
33 |
+
],
|
34 |
+
"x10": [
|
35 |
+
-0.22650043789522045,
|
36 |
+
1.0087085512107812,
|
37 |
+
-1.1535683034040811
|
38 |
+
],
|
39 |
+
"x11": [
|
40 |
+
-0.3931869525722032,
|
41 |
+
-1.2502276872280191,
|
42 |
+
-0.3931869525722032
|
43 |
+
],
|
44 |
+
"x12": [
|
45 |
+
-0.22475360373860484,
|
46 |
+
-1.2736037545187613,
|
47 |
+
-1.2736037545187613
|
48 |
+
],
|
49 |
+
"x13": [
|
50 |
+
-0.36644465957257716,
|
51 |
+
-0.36644465957257716,
|
52 |
+
-0.36644465957257716
|
53 |
+
],
|
54 |
+
"x14": [
|
55 |
+
-0.43989052441881077,
|
56 |
+
-1.6043722933752058,
|
57 |
+
-0.43989052441881077
|
58 |
+
],
|
59 |
+
"x2": [
|
60 |
+
-0.5244627009562925,
|
61 |
+
-0.5244627009562925,
|
62 |
+
-0.5244627009562925
|
63 |
+
],
|
64 |
+
"x3": [
|
65 |
+
-1.0038424733297755,
|
66 |
+
-1.0038424733297755,
|
67 |
+
0.9961722347560998
|
68 |
+
],
|
69 |
+
"x4": [
|
70 |
+
1.594238352724291,
|
71 |
+
1.594238352724291,
|
72 |
+
-0.6272587773911873
|
73 |
+
],
|
74 |
+
"x5": [
|
75 |
+
-0.9810049179827242,
|
76 |
+
1.0193628815402107,
|
77 |
+
1.0193628815402107
|
78 |
+
],
|
79 |
+
"x6": [
|
80 |
+
0.981004917982724,
|
81 |
+
-1.019362881540211,
|
82 |
+
-1.019362881540211
|
83 |
+
],
|
84 |
+
"x7": [
|
85 |
+
1.901326970246757,
|
86 |
+
-0.525948464229825,
|
87 |
+
-0.525948464229825
|
88 |
+
],
|
89 |
+
"x8": [
|
90 |
+
-1.9013269702467568,
|
91 |
+
0.5259484642298251,
|
92 |
+
0.5259484642298251
|
93 |
+
],
|
94 |
+
"x9": [
|
95 |
+
-0.7015627248979232,
|
96 |
+
0.8218167103592607,
|
97 |
+
-1.3109144990007968
|
98 |
+
]
|
99 |
+
},
|
100 |
+
"model": {
|
101 |
+
"file": "skops-_rlm9nbx.pkl"
|
102 |
+
},
|
103 |
+
"model_format": "pickle",
|
104 |
+
"task": "tabular-classification",
|
105 |
+
"use_intelex": false
|
106 |
+
}
|
107 |
+
}
|
confusion_matrix.png
ADDED
skops-_rlm9nbx.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:091ce918a8a505dd0c46bbf1d1019b08b175a03cf03072e652cf21a4e0ffafbc
|
3 |
+
size 1095
|