File size: 18,326 Bytes
255d174
 
 
 
 
 
4c58b40
255d174
4a137c5
255d174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c58b40
 
255d174
 
ce35150
255d174
 
4c58b40
0050fbb
 
 
4c58b40
 
 
443fe0b
4c58b40
255d174
4c58b40
255d174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a137c5
255d174
 
 
 
 
 
 
fbc6d07
 
 
 
 
255d174
 
 
 
 
 
 
4c58b40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
- finance
model_format: pickle
model_file: skops-ise057qg.pkl
widget:
- structuredData:
    Bene_Country:
    - COMOROS
    - CANADA
    - MOROCCO
    Sender_Country:
    - SRI-LANKA
    - USA
    - USA
    Transaction_Type:
    - MOVE-FUNDS
    - PAY-CHECK
    - MAKE-PAYMENT
    USD_amount:
    - 598.31
    - 398.72
    - 87.03
---

# Model description
This is a Gaussian Naive Bayes model trained on a synthetic dataset, containining a large variety of transaction types representing normal activities as well as 
abnormal/fraudulent activities generated by J.P. Morgan AI Research. The model predicts whether a transaction is normal or fraudulent.

## Intended uses & limitations
For educational purposes

## Training Procedure
The data preprocessing steps applied include the following:
- Dropping high cardinality features. This includes Transaction ID, Sender ID, Sender Account, Beneficiary ID, Beneficiary Account, Sender Sector 
- Dropping no variance features. This includes Sender LOB
- Dropping Time and date feature since the model is not time-series based
- Transforming and Encoding categorical features namely: Sender Country, Beneficiary Country, Transaction Type, and the target variable, Label
- Applying feature scaling on all features
- Splitting the dataset into training/test set using 85/15 split ratio
- Handling imbalanced dataset using imblearn framework and applying RandomUnderSampler method to eliminate noise which led to a 2.5% improvement in accuracy


![image/png](https://cdn-uploads.huggingface.co/production/uploads/6662300a0ad8c45a1ce59190/BEi0CfOfJ2ytxD5VoN4IM.png)

### Hyperparameters

<details>
<summary> Click to expand </summary>

| Hyperparameter                               | Value                                                                     |
|----------------------------------------------|---------------------------------------------------------------------------|
| memory                                       |                                                                           |
| steps                                        | [('preprocessorAll', ColumnTransformer(remainder='passthrough',<br />                  transformers=[('cat',<br />                                 Pipeline(steps=[('onehot',<br />                                                  OneHotEncoder(handle_unknown='ignore',<br />                                                                sparse_output=False))]),<br />                                 ['Sender_Country', 'Bene_Country',<br />                                  'Transaction_Type']),<br />                                ('num',<br />                                 Pipeline(steps=[('scale', StandardScaler())]),<br />                                 Index(['USD_amount'], dtype='object'))])), ('classifier', GaussianNB())]                                                                           |
| verbose                                      | False                                                                     |
| preprocessorAll                              | ColumnTransformer(remainder='passthrough',<br />                  transformers=[('cat',<br />                                 Pipeline(steps=[('onehot',<br />                                                  OneHotEncoder(handle_unknown='ignore',<br />                                                                sparse_output=False))]),<br />                                 ['Sender_Country', 'Bene_Country',<br />                                  'Transaction_Type']),<br />                                ('num',<br />                                 Pipeline(steps=[('scale', StandardScaler())]),<br />                                 Index(['USD_amount'], dtype='object'))])                                                                           |
| classifier                                   | GaussianNB()                                                              |
| preprocessorAll__n_jobs                      |                                                                           |
| preprocessorAll__remainder                   | passthrough                                                               |
| preprocessorAll__sparse_threshold            | 0.3                                                                       |
| preprocessorAll__transformer_weights         |                                                                           |
| preprocessorAll__transformers                | [('cat', Pipeline(steps=[('onehot',<br />                 OneHotEncoder(handle_unknown='ignore', sparse_output=False))]), ['Sender_Country', 'Bene_Country', 'Transaction_Type']), ('num', Pipeline(steps=[('scale', StandardScaler())]), Index(['USD_amount'], dtype='object'))]                                                                           |
| preprocessorAll__verbose                     | False                                                                     |
| preprocessorAll__verbose_feature_names_out   | True                                                                      |
| preprocessorAll__cat                         | Pipeline(steps=[('onehot',<br />                 OneHotEncoder(handle_unknown='ignore', sparse_output=False))])                                                                           |
| preprocessorAll__num                         | Pipeline(steps=[('scale', StandardScaler())])                             |
| preprocessorAll__cat__memory                 |                                                                           |
| preprocessorAll__cat__steps                  | [('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=False))] |
| preprocessorAll__cat__verbose                | False                                                                     |
| preprocessorAll__cat__onehot                 | OneHotEncoder(handle_unknown='ignore', sparse_output=False)               |
| preprocessorAll__cat__onehot__categories     | auto                                                                      |
| preprocessorAll__cat__onehot__drop           |                                                                           |
| preprocessorAll__cat__onehot__dtype          | <class 'numpy.float64'>                                                   |
| preprocessorAll__cat__onehot__handle_unknown | ignore                                                                    |
| preprocessorAll__cat__onehot__max_categories |                                                                           |
| preprocessorAll__cat__onehot__min_frequency  |                                                                           |
| preprocessorAll__cat__onehot__sparse         | deprecated                                                                |
| preprocessorAll__cat__onehot__sparse_output  | False                                                                     |
| preprocessorAll__num__memory                 |                                                                           |
| preprocessorAll__num__steps                  | [('scale', StandardScaler())]                                             |
| preprocessorAll__num__verbose                | False                                                                     |
| preprocessorAll__num__scale                  | StandardScaler()                                                          |
| preprocessorAll__num__scale__copy            | True                                                                      |
| preprocessorAll__num__scale__with_mean       | True                                                                      |
| preprocessorAll__num__scale__with_std        | True                                                                      |
| classifier__priors                           |                                                                           |
| classifier__var_smoothing                    | 1e-09                                                                     |

</details>

### Model Plot

<style>#sk-container-id-6 {color: black;background-color: white;}#sk-container-id-6 pre{padding: 0;}#sk-container-id-6 div.sk-toggleable {background-color: white;}#sk-container-id-6 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-6 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-6 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-6 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-6 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-6 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-6 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-6 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-6 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-6 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-6 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-6 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-6 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-6 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-6 div.sk-item {position: relative;z-index: 1;}#sk-container-id-6 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-6 div.sk-item::before, #sk-container-id-6 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-6 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-6 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-6 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-6 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-6 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-6 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-6 div.sk-label-container {text-align: center;}#sk-container-id-6 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-6 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-6" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;preprocessorAll&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse_output=False))]),[&#x27;Sender_Country&#x27;,&#x27;Bene_Country&#x27;,&#x27;Transaction_Type&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;,StandardScaler())]),Index([&#x27;USD_amount&#x27;], dtype=&#x27;object&#x27;))])),(&#x27;classifier&#x27;, GaussianNB())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-46" type="checkbox" ><label for="sk-estimator-id-46" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;preprocessorAll&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse_output=False))]),[&#x27;Sender_Country&#x27;,&#x27;Bene_Country&#x27;,&#x27;Transaction_Type&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;,StandardScaler())]),Index([&#x27;USD_amount&#x27;], dtype=&#x27;object&#x27;))])),(&#x27;classifier&#x27;, GaussianNB())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-47" type="checkbox" ><label for="sk-estimator-id-47" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessorAll: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse_output=False))]),[&#x27;Sender_Country&#x27;, &#x27;Bene_Country&#x27;,&#x27;Transaction_Type&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;, StandardScaler())]),Index([&#x27;USD_amount&#x27;], dtype=&#x27;object&#x27;))])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-48" type="checkbox" ><label for="sk-estimator-id-48" class="sk-toggleable__label sk-toggleable__label-arrow">cat</label><div class="sk-toggleable__content"><pre>[&#x27;Sender_Country&#x27;, &#x27;Bene_Country&#x27;, &#x27;Transaction_Type&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-49" type="checkbox" ><label for="sk-estimator-id-49" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;, sparse_output=False)</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-50" type="checkbox" ><label for="sk-estimator-id-50" class="sk-toggleable__label sk-toggleable__label-arrow">num</label><div class="sk-toggleable__content"><pre>Index([&#x27;USD_amount&#x27;], dtype=&#x27;object&#x27;)</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-51" type="checkbox" ><label for="sk-estimator-id-51" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-52" type="checkbox" ><label for="sk-estimator-id-52" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>[]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-53" type="checkbox" ><label for="sk-estimator-id-53" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-54" type="checkbox" ><label for="sk-estimator-id-54" class="sk-toggleable__label sk-toggleable__label-arrow">GaussianNB</label><div class="sk-toggleable__content"><pre>GaussianNB()</pre></div></div></div></div></div></div></div>

## Evaluation Results

| Metric   |    Value |
|----------|----------|
| accuracy | 0.794582 |

## Model Explainability

SHAP was used to determine the important features that helps the model make decisions
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6662300a0ad8c45a1ce59190/rQYxJoz86TtdkSSSGnCOr.png)

### Confusion Matrix

![Confusion Matrix](confusion_matrix.png)


# Model Card Authors

This model card is written by following authors: Seifullah Bello