a2c-PandaReachDense-v2 / config.json
saikiranp's picture
First training of PandaReachDense-v2
3dd2610
raw
history blame
15.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f984bd66ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f984bd619f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673983052047071652, "learning_rate": 0.00099, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UDhcZ9/jKoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+ovOPtawsjwrziE/+ovOPtawsjwrziE/+ovOPtawsjwrziE/+ovOPtawsjwrziE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiLadv0StST7OPYm+Xw4cP4KM5z3D76e+7HQivY2Kej8Sbty+OZdpP/aJBj6QEEW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD6i84+1rCyPCvOIT9Y1oU9jjBQOVhRgj36i84+1rCyPCvOIT9Y1oU9jjBQOVhRgj36i84+1rCyPCvOIT9Y1oU9jjBQOVhRgj36i84+1rCyPCvOIT9Y1oU9jjBQOVhRgj2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4034117 0.02181284 0.6320521 ]\n [0.4034117 0.02181284 0.6320521 ]\n [0.4034117 0.02181284 0.6320521 ]\n [0.4034117 0.02181284 0.6320521 ]]", "desired_goal": "[[-1.2321329 0.19695002 -0.26804966]\n [ 0.6095943 0.11306097 -0.3280011 ]\n [-0.03966229 0.9786766 -0.43052727]\n [ 0.9124637 0.13138565 -0.769784 ]]", "observation": "[[4.0341169e-01 2.1812838e-02 6.3205212e-01 6.5350235e-02 1.9854514e-04\n 6.3631713e-02]\n [4.0341169e-01 2.1812838e-02 6.3205212e-01 6.5350235e-02 1.9854514e-04\n 6.3631713e-02]\n [4.0341169e-01 2.1812838e-02 6.3205212e-01 6.5350235e-02 1.9854514e-04\n 6.3631713e-02]\n [4.0341169e-01 2.1812838e-02 6.3205212e-01 6.5350235e-02 1.9854514e-04\n 6.3631713e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4MoTPoiN7728F648GhH7vaBm0j3U1pY+UsB8vSaJ8L1NI5U+A9QPPHuFjb0Zm4M+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.1443286 -0.11696917 0.02125155]\n [-0.12259121 0.1027348 0.29460776]\n [-0.06170685 -0.11744909 0.29128495]\n [ 0.00877857 -0.06910225 0.25704268]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiZgSSfQy4L+UhpRSlIwBbJRLMowBdJRHQKP1AQCjk+51fZQoaAZoCWgPQwg6eZEJ+DXlv5SGlFKUaBVLMmgWR0Cj9LUPQOWjdX2UKGgGaAloD0MIorjjTX4L47+UhpRSlGgVSzJoFkdAo/RyWVu76HV9lChoBmgJaA9DCLhX5q26jvW/lIaUUpRoFUsyaBZHQKP0JYJVsDZ1fZQoaAZoCWgPQwipT3KHTWTyv5SGlFKUaBVLMmgWR0Cj9gKdhAnldX2UKGgGaAloD0MI3GYqxCNx5r+UhpRSlGgVSzJoFkdAo/W20kWyknV9lChoBmgJaA9DCPsGJjeKrOa/lIaUUpRoFUsyaBZHQKP1dE4vN/x1fZQoaAZoCWgPQwhdMSO8PYjhv5SGlFKUaBVLMmgWR0Cj9SeK8+RpdX2UKGgGaAloD0MIEfxvJTs28r+UhpRSlGgVSzJoFkdAo/b4valDW3V9lChoBmgJaA9DCHBfB84ZUeq/lIaUUpRoFUsyaBZHQKP2rK3/gix1fZQoaAZoCWgPQwjMJOoFn+btv5SGlFKUaBVLMmgWR0Cj9mnkT6BRdX2UKGgGaAloD0MI0TsVcM/z5L+UhpRSlGgVSzJoFkdAo/YdBa9sanV9lChoBmgJaA9DCCyBlNi1Pe+/lIaUUpRoFUsyaBZHQKP3+RHPNV11fZQoaAZoCWgPQwiGAraDEfvtv5SGlFKUaBVLMmgWR0Cj960/nnuBdX2UKGgGaAloD0MIaR7AIr8+87+UhpRSlGgVSzJoFkdAo/dqwbEP2HV9lChoBmgJaA9DCA6HpYEfVeC/lIaUUpRoFUsyaBZHQKP3HgLqlgt1fZQoaAZoCWgPQwjOiNLe4Ev2v5SGlFKUaBVLMmgWR0Cj+Q2jfvWpdX2UKGgGaAloD0MIgVt381SH57+UhpRSlGgVSzJoFkdAo/jBjBl+VnV9lChoBmgJaA9DCKRxqN+Freu/lIaUUpRoFUsyaBZHQKP4fwOvt+l1fZQoaAZoCWgPQwhVMZV+wlnvv5SGlFKUaBVLMmgWR0Cj+DInSfDldX2UKGgGaAloD0MIpDZxcr9D6L+UhpRSlGgVSzJoFkdAo/oTGipNsXV9lChoBmgJaA9DCDp2UInrmPO/lIaUUpRoFUsyaBZHQKP5xzg/C691fZQoaAZoCWgPQwiZ8bbSa/Pyv5SGlFKUaBVLMmgWR0Cj+YSowVTKdX2UKGgGaAloD0MIByRh304i47+UhpRSlGgVSzJoFkdAo/k31WbPQnV9lChoBmgJaA9DCE1Ngjek0e2/lIaUUpRoFUsyaBZHQKP7J7P6bfB1fZQoaAZoCWgPQwgvMgG/RtLwv5SGlFKUaBVLMmgWR0Cj+tvsRg7YdX2UKGgGaAloD0MIaverAN9t7r+UhpRSlGgVSzJoFkdAo/qZakhzNnV9lChoBmgJaA9DCOvFUE60q+6/lIaUUpRoFUsyaBZHQKP6TJ9y9251fZQoaAZoCWgPQwjtgsE1d/Tsv5SGlFKUaBVLMmgWR0Cj/EpT2nKodX2UKGgGaAloD0MIoIuGjEep7b+UhpRSlGgVSzJoFkdAo/v+pAD7qXV9lChoBmgJaA9DCNxnlZnSeuS/lIaUUpRoFUsyaBZHQKP7vAwfyPN1fZQoaAZoCWgPQwhaK9oc57bhv5SGlFKUaBVLMmgWR0Cj+28zZYgadX2UKGgGaAloD0MImL7XEByX6b+UhpRSlGgVSzJoFkdAo/1MN+b3GnV9lChoBmgJaA9DCMlZ2NMOP/q/lIaUUpRoFUsyaBZHQKP9ADEFW4p1fZQoaAZoCWgPQwjZ7bPKTOnsv5SGlFKUaBVLMmgWR0Cj/L17hNucdX2UKGgGaAloD0MI6dK/JJWp+r+UhpRSlGgVSzJoFkdAo/xwu5BkZ3V9lChoBmgJaA9DCGuBPSZSmuO/lIaUUpRoFUsyaBZHQKP+ToX9BKN1fZQoaAZoCWgPQwixFTQtsbL3v5SGlFKUaBVLMmgWR0Cj/gLCFbmmdX2UKGgGaAloD0MIaRt/orJh27+UhpRSlGgVSzJoFkdAo/3AOrhisnV9lChoBmgJaA9DCCYZOQt72uy/lIaUUpRoFUsyaBZHQKP9c2KEWZZ1fZQoaAZoCWgPQwh+GYwRicLmv5SGlFKUaBVLMmgWR0Cj/1B8x9G7dX2UKGgGaAloD0MIox03/G6657+UhpRSlGgVSzJoFkdAo/8Eny/bkHV9lChoBmgJaA9DCHi0ccRafO6/lIaUUpRoFUsyaBZHQKP+whOgxrV1fZQoaAZoCWgPQwg26Etvfy7bv5SGlFKUaBVLMmgWR0Cj/nUXYUWVdX2UKGgGaAloD0MIAfkSKjg86b+UhpRSlGgVSzJoFkdApABaeK8+R3V9lChoBmgJaA9DCIoipG5nX92/lIaUUpRoFUsyaBZHQKQADqJMxoJ1fZQoaAZoCWgPQwiE1y5tOCz2v5SGlFKUaBVLMmgWR0Cj/8wUYbbUdX2UKGgGaAloD0MI/+px32od+7+UhpRSlGgVSzJoFkdAo/9/aFmFrXV9lChoBmgJaA9DCENYjSWsjdC/lIaUUpRoFUsyaBZHQKQBZpu/Dcd1fZQoaAZoCWgPQwg0R1Z+GYzyv5SGlFKUaBVLMmgWR0CkARr5AQg+dX2UKGgGaAloD0MIKAzKNJpc6b+UhpRSlGgVSzJoFkdApADYWYWtVHV9lChoBmgJaA9DCFeVfVcEv/K/lIaUUpRoFUsyaBZHQKQAi6zVtoB1fZQoaAZoCWgPQwgEqn8QyRDhv5SGlFKUaBVLMmgWR0CkAm0XgtOEdX2UKGgGaAloD0MIrvAuF/Gd47+UhpRSlGgVSzJoFkdApAIhOxjawnV9lChoBmgJaA9DCJEr9SwIpQfAlIaUUpRoFUsyaBZHQKQB3oZhrnF1fZQoaAZoCWgPQwhB740hALjpv5SGlFKUaBVLMmgWR0CkAZGseXAudX2UKGgGaAloD0MI4BEVqpuL4L+UhpRSlGgVSzJoFkdApAN2938n/nV9lChoBmgJaA9DCM+/XfbrbgHAlIaUUpRoFUsyaBZHQKQDKyN4qw11fZQoaAZoCWgPQwgfTfVk/tHqv5SGlFKUaBVLMmgWR0CkAuif6Gg0dX2UKGgGaAloD0MIOLpKd9fZ7r+UhpRSlGgVSzJoFkdApAKbxXnyNHV9lChoBmgJaA9DCLbXgt4bw++/lIaUUpRoFUsyaBZHQKQEdpyp71J1fZQoaAZoCWgPQwg4SIjyBe36v5SGlFKUaBVLMmgWR0CkBCqJ/G2kdX2UKGgGaAloD0MIhBCQL6FC+r+UhpRSlGgVSzJoFkdApAPn9pAUtnV9lChoBmgJaA9DCFSqRNlbivG/lIaUUpRoFUsyaBZHQKQDmwh4dIZ1fZQoaAZoCWgPQwgkXwmkxK7wv5SGlFKUaBVLMmgWR0CkBYC3XqZ/dX2UKGgGaAloD0MIp1g1CHO717+UhpRSlGgVSzJoFkdApAU0r9VFQXV9lChoBmgJaA9DCIALsmX5uvS/lIaUUpRoFUsyaBZHQKQE8fHxSYR1fZQoaAZoCWgPQwh7TQ8KSpH2v5SGlFKUaBVLMmgWR0CkBKUahpQDdX2UKGgGaAloD0MIwZDVrZ6T47+UhpRSlGgVSzJoFkdApAaJamoBJnV9lChoBmgJaA9DCBjONczQ+Oq/lIaUUpRoFUsyaBZHQKQGPZuhsZZ1fZQoaAZoCWgPQwiR8L2/QXv8v5SGlFKUaBVLMmgWR0CkBfsAeaKDdX2UKGgGaAloD0MIwhTl0vgF7b+UhpRSlGgVSzJoFkdApAWuHN5dGHV9lChoBmgJaA9DCFdgyOpWT+W/lIaUUpRoFUsyaBZHQKQHjUpd8iR1fZQoaAZoCWgPQwi1iZP7HYrvv5SGlFKUaBVLMmgWR0CkB0Fw1ivxdX2UKGgGaAloD0MISP31Cgtu67+UhpRSlGgVSzJoFkdApAb+0LMLW3V9lChoBmgJaA9DCHB87ZklgQHAlIaUUpRoFUsyaBZHQKQGsgyuZCx1fZQoaAZoCWgPQwh8mpMXmYDov5SGlFKUaBVLMmgWR0CkCJS88La3dX2UKGgGaAloD0MImUuqtpvg7L+UhpRSlGgVSzJoFkdApAhIzpHI63V9lChoBmgJaA9DCHkB9tGpq+e/lIaUUpRoFUsyaBZHQKQIBiUgSvl1fZQoaAZoCWgPQwh968N6o1brv5SGlFKUaBVLMmgWR0CkB7ko4MnadX2UKGgGaAloD0MIrP9zmC/v9L+UhpRSlGgVSzJoFkdApAmVWhh6SnV9lChoBmgJaA9DCAt8RbdeU+S/lIaUUpRoFUsyaBZHQKQJSXkYGdJ1fZQoaAZoCWgPQwj7PbFOle/zv5SGlFKUaBVLMmgWR0CkCQbiADq4dX2UKGgGaAloD0MIxJWzd0Zb5L+UhpRSlGgVSzJoFkdApAi6BClabHV9lChoBmgJaA9DCO1FtB1Td/i/lIaUUpRoFUsyaBZHQKQKucwxnFp1fZQoaAZoCWgPQwi6hhkaT0T1v5SGlFKUaBVLMmgWR0CkCm6GpMpPdX2UKGgGaAloD0MIkUQvo1hu6L+UhpRSlGgVSzJoFkdApAor/ACW/3V9lChoBmgJaA9DCKNXA5SGmvO/lIaUUpRoFUsyaBZHQKQJ3yz5XU91fZQoaAZoCWgPQwiuD+uNWmHsv5SGlFKUaBVLMmgWR0CkC7pkoWpIdX2UKGgGaAloD0MIUyKJXkYx/b+UhpRSlGgVSzJoFkdApAtuiWVu8HV9lChoBmgJaA9DCOBoxw2/m9+/lIaUUpRoFUsyaBZHQKQLK8wpON51fZQoaAZoCWgPQwjvGvSltz/jv5SGlFKUaBVLMmgWR0CkCt72lEZ0dX2UKGgGaAloD0MIT+rL0k4N8L+UhpRSlGgVSzJoFkdApAzeFFlTWHV9lChoBmgJaA9DCI+JlGbzuOq/lIaUUpRoFUsyaBZHQKQMkkvboKV1fZQoaAZoCWgPQwh3ZoLhXEPyv5SGlFKUaBVLMmgWR0CkDE+vyLAIdX2UKGgGaAloD0MILGaEtwch7b+UhpRSlGgVSzJoFkdApAwDnaFmF3V9lChoBmgJaA9DCICBIECGjva/lIaUUpRoFUsyaBZHQKQOEYj0L+h1fZQoaAZoCWgPQwgRVfgzvNnjv5SGlFKUaBVLMmgWR0CkDcWll9SddX2UKGgGaAloD0MIiA6BI4GG97+UhpRSlGgVSzJoFkdApA2D7Kq4pnV9lChoBmgJaA9DCFyv6UFBqeC/lIaUUpRoFUsyaBZHQKQNNzxPO6d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}