dreamerdeo commited on
Commit
2897775
·
verified ·
1 Parent(s): 796f3db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -32
README.md CHANGED
@@ -70,53 +70,31 @@ Refer to [Sailor2 Website](https://sailorllm.github.io/) for more training detai
70
  ## Requirements
71
  The code of Sailor2 has been in the latest Hugging face transformers and we advise you to install `transformers==4.46.3`.
72
 
73
- ## Quickstart
74
 
75
  Here provides a code snippet to show you how to load the tokenizer and model and how to generate contents.
76
 
77
  ```python
78
- import torch
79
  from transformers import AutoModelForCausalLM, AutoTokenizer
80
- device = "cuda"
81
 
82
- model = AutoModelForCausalLM.from_pretrained(
83
- 'sail/Sailor2-20B-Chat',
84
- torch_dtype=torch.bfloat16,
85
- device_map="auto"
86
- )
87
-
88
- tokenizer = AutoTokenizer.from_pretrained('sail/Sailor2-1B-Chat')
89
- system_prompt= \
90
- 'You are an AI assistant named Sailor2, created by Sea AI Lab. \
91
- As an AI assistant, you can answer questions in English, Chinese, and Southeast Asian languages \
92
- such as Burmese, Cebuano, Ilocano, Indonesian, Javanese, Khmer, Lao, Malay, Sundanese, Tagalog, Thai, Vietnamese, and Waray. \
93
- Your responses should be friendly, unbiased, informative, detailed, and faithful.'
94
-
95
- prompt = "Beri saya pengenalan singkat tentang model bahasa besar."
96
- # prompt = "Hãy cho tôi một giới thiệu ngắn gọn về mô hình ngôn ngữ lớn."
97
- # prompt = "ให้ฉันแนะนำสั้น ๆ เกี่ยวกับโมเดลภาษาขนาดใหญ่"
98
 
99
- messages = [
100
- {"role": "system", "content": system_prompt},
101
- {"role": "user", "content": prompt}
102
- ]
103
- text = tokenizer.apply_chat_template(
104
- messages,
105
- tokenize=False,
106
- add_generation_prompt=True
107
- )
108
 
109
- model_inputs = tokenizer([text], return_tensors="pt").to(device)
110
- input_ids = model_inputs.input_ids.to(device)
111
 
112
  generated_ids = model.generate(
113
- input_ids,
114
- max_new_tokens=512,
115
  )
116
 
117
  generated_ids = [
118
  output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
119
  ]
 
120
  response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
121
  print(response)
122
  ```
 
70
  ## Requirements
71
  The code of Sailor2 has been in the latest Hugging face transformers and we advise you to install `transformers==4.46.3`.
72
 
73
+ ### Quickstart
74
 
75
  Here provides a code snippet to show you how to load the tokenizer and model and how to generate contents.
76
 
77
  ```python
 
78
  from transformers import AutoModelForCausalLM, AutoTokenizer
79
+ device = "cuda" # the device to load the model
80
 
81
+ model = AutoModelForCausalLM.from_pretrained("sail/Sailor2-1B", device_map="auto")
82
+ tokenizer = AutoTokenizer.from_pretrained("sail/Sailor2-1B")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
+ input_message = "Model bahasa adalah model probabilistik"
85
+ ### The given Indonesian input translates to 'A language model is a probabilistic model of.'
 
 
 
 
 
 
 
86
 
87
+ model_inputs = tokenizer([input_message], return_tensors="pt").to(device)
 
88
 
89
  generated_ids = model.generate(
90
+ model_inputs.input_ids,
91
+ max_new_tokens=64
92
  )
93
 
94
  generated_ids = [
95
  output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
96
  ]
97
+
98
  response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
99
  print(response)
100
  ```