File size: 6,863 Bytes
42e8393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "7"


from trainer import Trainer, TrainerArgs

from TTS.tts.configs.shared_configs import BaseDatasetConfig , CharactersConfig
from TTS.config.shared_configs import BaseAudioConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.vits import Vits, VitsAudioConfig, VitsArgs
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor
from TTS.tts.utils.speakers import SpeakerManager

#import wandb
 # Start a wandb run with `sync_tensorboard=True`
#if wandb.run is None:
    #wandb.init(project="persian-tts-vits-grapheme-cv15-fa-male-native-multispeaker-RERUN", group="GPUx8 accel mixed bf16 128x32", sync_tensorboard=True)

# output_path = os.path.dirname(os.path.abspath(__file__))
# output_path = output_path + '/notebook_files/runs'
# output_path = wandb.run.dir  ### PROBABLY better for notebook
output_path = "runs"

# print("output path is:")
# print(output_path)

cache_path = "cache"



# def mozilla(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
#     """Normalizes Mozilla meta data files to TTS format"""
#     txt_file = os.path.join(root_path, meta_file)
#     items = []
#     # speaker_name = "mozilla"
#     with open(txt_file, "r", encoding="utf-8") as ttf:
#         for line in ttf:
#             cols = line.split("|")
#             wav_file = cols[1].strip()
#             text = cols[0].strip()
#             speaker_name = cols[2].strip()
#             wav_file = os.path.join(root_path, "wavs", wav_file)
#             items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
#     return items



dataset_config = BaseDatasetConfig(
    formatter='common_voice', meta_file_train='validated.tsv', path="/home/bargh1/TTS/datasets"
)




character_config=CharactersConfig(
  characters='ءابتثجحخدذرزسشصضطظعغفقلمنهويِپچژکگیآأؤإئًَُّ',
#   characters="!¡'(),-.:;¿?ABCDEFGHIJKLMNOPRSTUVWXYZabcdefghijklmnopqrstuvwxyzáçèéêëìíîïñòóôöùúûü«°±µ»$%&‘’‚“`”„",
  punctuations='!(),-.:;? ̠،؛؟‌<>٫',
  phonemes='ˈˌːˑpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟaegiouwyɪʊ̩æɑɔəɚɛɝɨ̃ʉʌʍ0123456789"#$%*+/=ABCDEFGHIJKLMNOPRSTUVWXYZ[]^_{}۱۲۳۴۵۶۷۸۹۰',
  pad="<PAD>",
  eos="<EOS>",
  bos="<BOS>",
  blank="<BLNK>",
  characters_class="TTS.tts.models.vits.VitsCharacters",
  )

# From the coqui multilinguL recipes, will try later
vitsArgs = VitsArgs(
    # use_language_embedding=True,
    # embedded_language_dim=1,
    use_speaker_embedding=True,
    use_sdp=False,
)

audio_config = BaseAudioConfig(
     sample_rate=22050,
     do_trim_silence=True,
     min_level_db=-1,
    # do_sound_norm=True,
     signal_norm=True,
     clip_norm=True,
     symmetric_norm=True,
     max_norm = 0.9,
     resample=True,
     win_length=1024,
     hop_length=256,
     num_mels=80,
     mel_fmin=0,
     mel_fmax=None
 )

vits_audio_config = VitsAudioConfig(
    sample_rate=22050,
#    do_sound_norm=True,
    win_length=1024,
    hop_length=256,
    num_mels=80,
    # do_trim_silence=True, #from hugging
    mel_fmin=0,
    mel_fmax=None
)
config = VitsConfig(
    model_args=vitsArgs,
    audio=vits_audio_config, #from huggingface
    run_name="persian-tts-vits-grapheme-cv15-multispeaker-RERUN",
    use_speaker_embedding=True, ## For MULTI SPEAKER
    batch_size=8,
    batch_group_size=16,
    eval_batch_size=4,
    num_loader_workers=16,
    num_eval_loader_workers=8,
    run_eval=True,
    run_eval_steps = 1000,
    print_eval=True,
    test_delay_epochs=-1,
    epochs=1000,
    save_step=1000,
    text_cleaner="basic_cleaners", #from MH
    use_phonemes=False,
    # phonemizer='persian_mh', #from TTS github
    # phoneme_language="fa",
    characters=character_config, #test without as well
    phoneme_cache_path=os.path.join(cache_path, "phoneme_cache_grapheme_azure-2"),
    compute_input_seq_cache=True,
    print_step=25,
    mixed_precision=False, #from TTS - True causes error "Expected reduction dim"
    test_sentences=[
        ["زین همرهان سست عناصر، دلم گرفت."],
        ["بیا تا گل برافشانیم و می در ساغر اندازیم."],
        ["بنی آدم اعضای یک پیکرند, که در آفرینش ز یک گوهرند."],
        ["سهام زندگی به 10 درصد و سهام بیتکوین گوگل به 33 درصد افزایش یافت."],
        ["من بودم و آبجی فوتینا، و حالا رپتی پتینا. این شعر یکی از اشعار معروف رو حوضی است که در کوچه بازار تهران زمزمه می شده است." ],
        ["یه دو دقه هم به حرفم گوش کن، نگو نگوشیدم و نحرفیدی."],
        [ "داستان با توصیف طوفان‌های شدید آغاز می‌شود؛ طوفان‌هایی که مزرعه‌ها را از بین می‌برد و محصولات را زیر شن دفن می‌کند؛ محصولاتی که زندگی افراد بسیاری به آن وابسته است."]
    ],
    output_path=output_path,
    datasets=[dataset_config]
)

# INITIALIZE THE AUDIO PROCESSOR
# Audio processor is used for feature extraction and audio I/O.
# It mainly serves to the dataloader and the training loggers.
ap = AudioProcessor.init_from_config(config)

# INITIALIZE THE TOKENIZER
# Tokenizer is used to convert text to sequences of token IDs.
# config is updated with the default characters if not defined in the config.
tokenizer, config = TTSTokenizer.init_from_config(config)

# LOAD DATA SAMPLES
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(
    dataset_config,
    eval_split=True,
    eval_split_max_size=config.eval_split_max_size,
    eval_split_size=config.eval_split_size,
)

# init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader
speaker_manager = SpeakerManager()
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name")
config.num_speakers = speaker_manager.num_speakers



# init model
model = Vits(config, ap, tokenizer, speaker_manager=speaker_manager)

# init the trainer and 🚀

trainer = Trainer(
    TrainerArgs(use_accelerate=True),
    config,
    output_path,
    model=model,
    train_samples=train_samples,
    eval_samples=eval_samples,
)
trainer.fit()