File size: 6,863 Bytes
42e8393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "7"
from trainer import Trainer, TrainerArgs
from TTS.tts.configs.shared_configs import BaseDatasetConfig , CharactersConfig
from TTS.config.shared_configs import BaseAudioConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.vits import Vits, VitsAudioConfig, VitsArgs
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor
from TTS.tts.utils.speakers import SpeakerManager
#import wandb
# Start a wandb run with `sync_tensorboard=True`
#if wandb.run is None:
#wandb.init(project="persian-tts-vits-grapheme-cv15-fa-male-native-multispeaker-RERUN", group="GPUx8 accel mixed bf16 128x32", sync_tensorboard=True)
# output_path = os.path.dirname(os.path.abspath(__file__))
# output_path = output_path + '/notebook_files/runs'
# output_path = wandb.run.dir ### PROBABLY better for notebook
output_path = "runs"
# print("output path is:")
# print(output_path)
cache_path = "cache"
# def mozilla(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
# """Normalizes Mozilla meta data files to TTS format"""
# txt_file = os.path.join(root_path, meta_file)
# items = []
# # speaker_name = "mozilla"
# with open(txt_file, "r", encoding="utf-8") as ttf:
# for line in ttf:
# cols = line.split("|")
# wav_file = cols[1].strip()
# text = cols[0].strip()
# speaker_name = cols[2].strip()
# wav_file = os.path.join(root_path, "wavs", wav_file)
# items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
# return items
dataset_config = BaseDatasetConfig(
formatter='common_voice', meta_file_train='validated.tsv', path="/home/bargh1/TTS/datasets"
)
character_config=CharactersConfig(
characters='ءابتثجحخدذرزسشصضطظعغفقلمنهويِپچژکگیآأؤإئًَُّ',
# characters="!¡'(),-.:;¿?ABCDEFGHIJKLMNOPRSTUVWXYZabcdefghijklmnopqrstuvwxyzáçèéêëìíîïñòóôöùúûü«°±µ»$%&‘’‚“`”„",
punctuations='!(),-.:;? ̠،؛؟<>٫',
phonemes='ˈˌːˑpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟaegiouwyɪʊ̩æɑɔəɚɛɝɨ̃ʉʌʍ0123456789"#$%*+/=ABCDEFGHIJKLMNOPRSTUVWXYZ[]^_{}۱۲۳۴۵۶۷۸۹۰',
pad="<PAD>",
eos="<EOS>",
bos="<BOS>",
blank="<BLNK>",
characters_class="TTS.tts.models.vits.VitsCharacters",
)
# From the coqui multilinguL recipes, will try later
vitsArgs = VitsArgs(
# use_language_embedding=True,
# embedded_language_dim=1,
use_speaker_embedding=True,
use_sdp=False,
)
audio_config = BaseAudioConfig(
sample_rate=22050,
do_trim_silence=True,
min_level_db=-1,
# do_sound_norm=True,
signal_norm=True,
clip_norm=True,
symmetric_norm=True,
max_norm = 0.9,
resample=True,
win_length=1024,
hop_length=256,
num_mels=80,
mel_fmin=0,
mel_fmax=None
)
vits_audio_config = VitsAudioConfig(
sample_rate=22050,
# do_sound_norm=True,
win_length=1024,
hop_length=256,
num_mels=80,
# do_trim_silence=True, #from hugging
mel_fmin=0,
mel_fmax=None
)
config = VitsConfig(
model_args=vitsArgs,
audio=vits_audio_config, #from huggingface
run_name="persian-tts-vits-grapheme-cv15-multispeaker-RERUN",
use_speaker_embedding=True, ## For MULTI SPEAKER
batch_size=8,
batch_group_size=16,
eval_batch_size=4,
num_loader_workers=16,
num_eval_loader_workers=8,
run_eval=True,
run_eval_steps = 1000,
print_eval=True,
test_delay_epochs=-1,
epochs=1000,
save_step=1000,
text_cleaner="basic_cleaners", #from MH
use_phonemes=False,
# phonemizer='persian_mh', #from TTS github
# phoneme_language="fa",
characters=character_config, #test without as well
phoneme_cache_path=os.path.join(cache_path, "phoneme_cache_grapheme_azure-2"),
compute_input_seq_cache=True,
print_step=25,
mixed_precision=False, #from TTS - True causes error "Expected reduction dim"
test_sentences=[
["زین همرهان سست عناصر، دلم گرفت."],
["بیا تا گل برافشانیم و می در ساغر اندازیم."],
["بنی آدم اعضای یک پیکرند, که در آفرینش ز یک گوهرند."],
["سهام زندگی به 10 درصد و سهام بیتکوین گوگل به 33 درصد افزایش یافت."],
["من بودم و آبجی فوتینا، و حالا رپتی پتینا. این شعر یکی از اشعار معروف رو حوضی است که در کوچه بازار تهران زمزمه می شده است." ],
["یه دو دقه هم به حرفم گوش کن، نگو نگوشیدم و نحرفیدی."],
[ "داستان با توصیف طوفانهای شدید آغاز میشود؛ طوفانهایی که مزرعهها را از بین میبرد و محصولات را زیر شن دفن میکند؛ محصولاتی که زندگی افراد بسیاری به آن وابسته است."]
],
output_path=output_path,
datasets=[dataset_config]
)
# INITIALIZE THE AUDIO PROCESSOR
# Audio processor is used for feature extraction and audio I/O.
# It mainly serves to the dataloader and the training loggers.
ap = AudioProcessor.init_from_config(config)
# INITIALIZE THE TOKENIZER
# Tokenizer is used to convert text to sequences of token IDs.
# config is updated with the default characters if not defined in the config.
tokenizer, config = TTSTokenizer.init_from_config(config)
# LOAD DATA SAMPLES
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader
speaker_manager = SpeakerManager()
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name")
config.num_speakers = speaker_manager.num_speakers
# init model
model = Vits(config, ap, tokenizer, speaker_manager=speaker_manager)
# init the trainer and 🚀
trainer = Trainer(
TrainerArgs(use_accelerate=True),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
)
trainer.fit()
|