|
from typing import Dict, List, Any |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
from PIL import Image |
|
import requests |
|
import torch |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path="./"): |
|
|
|
self.processor = BlipProcessor.from_pretrained(path) |
|
self.model = BlipForConditionalGeneration.from_pretrained(path).to("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
image_url (:obj: `str`): URL of the image to caption |
|
prompt (:obj: `str`, optional): Text prompt for conditional captioning |
|
Return: |
|
A :obj:`list` with caption as `dict` |
|
""" |
|
|
|
image_url = data.get("image_url") |
|
prompt = data.get("prompt", "") |
|
|
|
|
|
image = Image.open(requests.get(image_url, stream=True).raw).convert("RGB") |
|
|
|
|
|
if prompt: |
|
|
|
inputs = self.processor(image, prompt, return_tensors="pt").to(self.model.device) |
|
else: |
|
|
|
inputs = self.processor(image, return_tensors="pt").to(self.model.device) |
|
|
|
|
|
out = self.model.generate(**inputs) |
|
caption = self.processor.decode(out[0], skip_special_tokens=True) |
|
|
|
|
|
return [{"caption": caption}] |
|
|