--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: isl-model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7533380182712579 --- # isl-model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9812 - Accuracy: 0.7533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6205 | 1.0 | 89 | 2.4275 | 0.5938 | | 1.6582 | 2.0 | 178 | 1.6078 | 0.7063 | | 1.3648 | 3.0 | 267 | 1.3754 | 0.7168 | | 1.1069 | 4.0 | 356 | 1.2056 | 0.7323 | | 1.1562 | 5.0 | 445 | 1.0958 | 0.7491 | | 1.1048 | 6.0 | 534 | 1.0221 | 0.7583 | | 0.9705 | 7.0 | 623 | 0.9831 | 0.7625 | | 0.9059 | 8.0 | 712 | 1.0279 | 0.7386 | | 0.9426 | 9.0 | 801 | 0.9511 | 0.7632 | | 0.8951 | 10.0 | 890 | 0.9812 | 0.7533 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3