File size: 2,242 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import streamlit as st
import pandas as pd
import numpy as np
import re
from datetime import datetime
import subprocess
from fairseq.models.transformer import TransformerModel
time_interval=0
st.title('Knowledge Distillation for Multi-Domain Neural Machine Translation')
title = st.text_input('English Text', 'We are not inclined to entertain this petition under Article 32 of the Constitution of India.')

if st.button('Law En-Hi Teacher'):
	time_1 = datetime.now()
	zh2en = TransformerModel.from_pretrained('law/out/tokenized.en-hi/', checkpoint_file='../../checkpoint_best.pt',bpe='subword_nmt',  bpe_codes='/home/sakharam/RnD/translation/en-hi/bpe-codes/codes.en',tokenizer='moses')
	time_2 = datetime.now()
	time_interval = time_2 - time_1
	st.write('Hindi Translation: ',zh2en.translate([title.lower()])[0])
	st.write('Inference Time: ',time_interval)
	
if st.button('Sports En-Hi Teacher'):
	time_1 = datetime.now()
	zh2en = TransformerModel.from_pretrained('sports/out/tokenized.en-hi/', checkpoint_file='../../checkpoint_best.pt',bpe='subword_nmt',  bpe_codes='/home/sakharam/RnD/translation/en-hi/bpe-codes/codes.en',tokenizer='moses')
	time_2 = datetime.now()
	time_interval = time_2 - time_1
	st.write('Hindi Translation: ',zh2en.translate([title.lower()])[0])
	st.write('Inference Time: ',time_interval)
	
if st.button('Tourism En-Hi Teacher'):
	time_1 = datetime.now()
	zh2en = TransformerModel.from_pretrained('tourism/out/tokenized.en-hi/', checkpoint_file='../../checkpoint_best.pt',bpe='subword_nmt',  bpe_codes='/home/sakharam/RnD/translation/en-hi/bpe-codes/codes.en',tokenizer='moses')
	time_2 = datetime.now()
	time_interval = time_2 - time_1
	st.write('Hindi Translation: ',zh2en.translate([title.lower()])[0])
	st.write('Inference Time: ',time_interval)
	
if st.button('Multi-Domain En-Hi Student'):
	time_1 = datetime.now()
	zh2en = TransformerModel.from_pretrained('multi/out/tokenized.en-hi/', checkpoint_file='../../checkpoint_best.pt',bpe='subword_nmt',  bpe_codes='/home/sakharam/RnD/translation/en-hi/bpe-codes/codes.en',tokenizer='moses')
	time_2 = datetime.now()
	time_interval = time_2 - time_1
	st.write('Hindi Translation: ',zh2en.translate([title.lower()])[0])
	st.write('Inference Time: ',time_interval)