File size: 26,748 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

All the example YAML configurations are partial. To get an overview of what this YAML configuration is you can start by reading the [Quickstart](quickstart) section.

## How do I use Pretrained embeddings (e.g. GloVe)?

This is handled in the initial steps of the `onmt_train` execution.

Pretrained embeddings can be configured in the main YAML configuration file.

### Example

1. Get GloVe files:

```bash
mkdir "glove_dir"
wget http://nlp.stanford.edu/data/glove.6B.zip
unzip glove.6B.zip -d "glove_dir"
```

2. Adapt the configuration:

```yaml
# <your_config>.yaml

<Your data config...>

...

# this means embeddings will be used for both encoder and decoder sides
both_embeddings: glove_dir/glove.6B.100d.txt
# to set src and tgt embeddings separately:
# src_embeddings: ...
# tgt_embeddings: ...

# supported types: GloVe, word2vec
embeddings_type: "GloVe"

# word_vec_size need to match with the pretrained embeddings dimensions
word_vec_size: 100

```

3. Train:

```bash
onmt_train -config <your_config>.yaml
```

Notes:

- the matched embeddings will be saved at `<save_data>.enc_embeddings.pt` and `<save_data>.dec_embeddings.pt`;
- additional flags `freeze_word_vecs_enc` and `freeze_word_vecs_dec` are available to freeze the embeddings.

## How do I use the Transformer model?

The transformer model is very sensitive to hyperparameters. To run it
effectively you need to set a bunch of different options that mimic the [Google](https://arxiv.org/abs/1706.03762) setup. We have confirmed the following configuration can replicate their WMT results.

```yaml
<data configuration>
...

# General opts
save_model: foo
save_checkpoint_steps: 10000
valid_steps: 10000
train_steps: 200000

# Batching
queue_size: 10000
bucket_size: 32768
world_size: 4
gpu_ranks: [0, 1, 2, 3]
batch_type: "tokens"
batch_size: 4096
valid_batch_size: 8
max_generator_batches: 2
accum_count: [4]
accum_steps: [0]

# Optimization
model_dtype: "fp32"
optim: "adam"
learning_rate: 2
warmup_steps: 8000
decay_method: "noam"
adam_beta2: 0.998
max_grad_norm: 0
label_smoothing: 0.1
param_init: 0
param_init_glorot: true
normalization: "tokens"

# Model
encoder_type: transformer
decoder_type: transformer
position_encoding: true
enc_layers: 6
dec_layers: 6
heads: 8
rnn_size: 512
word_vec_size: 512
transformer_ff: 2048
dropout_steps: [0]
dropout: [0.1]
attention_dropout: [0.1]
```

Here are what the most important parameters mean:

* `param_init_glorot` & `param_init 0`: correct initialization of parameters;
* `position_encoding`: add sinusoidal position encoding to each embedding;
* `optim adam`, `decay_method noam`, `warmup_steps 8000`: use special learning rate;
* `batch_type tokens`, `normalization tokens`: batch and normalize based on number of tokens and not sentences;
* `accum_count 4`: compute gradients based on four batches;
* `label_smoothing 0.1`: use label smoothing loss.

## Do you support multi-gpu?

First you need to make sure you `export CUDA_VISIBLE_DEVICES=0,1,2,3`.

If you want to use GPU id 1 and 3 of your OS, you will need to `export CUDA_VISIBLE_DEVICES=1,3`

Both `-world_size` and `-gpu_ranks` need to be set. E.g. `-world_size 4 -gpu_ranks 0 1 2 3` will use 4 GPU on this node only.

**Warning - Deprecated**

Multi-node distributed training is not properly implemented in OpenNMT-py 2.0 yet.

If you want to use 2 nodes with 2 GPU each, you need to set `-master_ip` and `-master_port`, and

* `-world_size 4 -gpu_ranks 0 1`: on the first node
* `-world_size 4 -gpu_ranks 2 3`: on the second node
* `-accum_count 2`: This will accumulate over 2 batches before updating parameters.

If you use a regular network card (1 Gbps) then we suggest to use a higher `-accum_count` to minimize the inter-node communication.

**Note:**

In the legacy version, when training on several GPUs, you couldn't have them in 'Exclusive' compute mode (`nvidia-smi -c 3`).

The multi-gpu setup relied on a Producer/Consumer setup. This setup means there will be `2<n_gpu> + 1` processes spawned, with 2 processes per GPU, one for model training and one (Consumer) that hosts a `Queue` of batches that will be processed next. The additional process is the Producer, creating batches and sending them to the Consumers. This setup is beneficial for both wall time and memory, since it loads data shards 'in advance', and does not require to load it for each GPU process.

The new codebase allows GPUs to be in exclusive mode, because batches are moved to the device later in the process. Hence, there is no 'producer' process on each GPU.

## How can I ensemble Models at inference?

You can specify several models in the `onmt_translate` command line: `-model model1_seed1 model2_seed2`
Bear in mind that your models must share the same target vocabulary.

## How can I weight different corpora at training?

This is naturally embedded in the data configuration format introduced in OpenNMT-py 2.0. Each entry of the `data` configuration will have its own *weight*. When building batches, we'll sequentially take *weight* example from each corpus.

**Note**: don't worry about batch homogeneity/heterogeneity, the pooling mechanism is here for that reason. Instead of building batches one at a time, we will load `pool_factor` of batches worth of examples, sort them by length, build batches and then yield them in a random order.

### Example

In the following example, we will sequentially sample 7 examples from *corpus_1*, and 3 examples from *corpus_2*, and so on:

```yaml
# <your_config>.yaml

...

# Corpus opts:
data:
    corpus_1:
        path_src: toy-ende/src-train1.txt
        path_tgt: toy-ende/tgt-train1.txt
        weight: 7
    corpus_2:
        path_src: toy-ende/src-train1.txt
        path_tgt: toy-ende/tgt-train1.txt
        weight: 3
    valid:
        path_src: toy-ende/src-val.txt
        path_tgt: toy-ende/tgt-val.txt
...

```

## How can I apply on-the-fly tokenization and subword regularization when training?

This is naturally embedded in the data configuration format introduced in OpenNMT-py 2.0. Each entry of the `data` configuration will have its own `transforms`. `transforms` basically is a `list` of functions that will be applied sequentially to the examples when read from file.

### Example

This example applies sentencepiece tokenization with `pyonmttok`, with `nbest=20` and `alpha=0.1`.

```yaml
# <your_config>.yaml

...

# Tokenization options
src_subword_type: sentencepiece
src_subword_model: examples/subword.spm.model
tgt_subword_type: sentencepiece
tgt_subword_model: examples/subword.spm.model

# Number of candidates for SentencePiece sampling
subword_nbest: 20
# Smoothing parameter for SentencePiece sampling
subword_alpha: 0.1
# Specific arguments for pyonmttok
src_onmttok_kwargs: "{'mode': 'none', 'spacer_annotate': True}"
tgt_onmttok_kwargs: "{'mode': 'none', 'spacer_annotate': True}"

# Corpus opts:
data:
    corpus_1:
        path_src: toy-ende/src-train1.txt
        path_tgt: toy-ende/tgt-train1.txt
        transforms: [onmt_tokenize]
        weight: 1
    valid:
        path_src: toy-ende/src-val.txt
        path_tgt: toy-ende/tgt-val.txt
        transforms: [onmt_tokenize]
...

```

Other tokenization methods and transforms are readily available. See the dedicated docs for more details.

## What are the readily available on-the-fly data transforms?

It's your lucky day! We already embedded several transforms that can be used easily.

Note: all the details about every flag and options for each transform can be found in the [train](#train) section.

### General purpose

#### Filter examples by length

Transform name: `filtertoolong`

Class: `onmt.transforms.misc.FilterTooLongTransform`

The following options can be added to the configuration :
- `src_seq_length`: maximum source sequence length;
- `tgt_seq_length`: maximum target sequence length.

#### Add custom prefix to examples

Transform name: `prefix`

Class: `onmt.transforms.misc.PrefixTransform`

For each dataset that the `prefix` transform is applied to, you can set the additional `src_prefix` and `tgt_prefix` parameters in its data configuration:

```yaml
data:
    corpus_1:
        path_src: toy-ende/src-train1.txt
        path_tgt: toy-ende/tgt-train1.txt
        transforms: [prefix]
        weight: 1
        src_prefix: __some_src_prefix__
        tgt_prefix: __some_tgt_prefix__
```

### Tokenization

Common options for the tokenization transforms are the following:

- `src_subword_model`: path of source side (or both if shared) subword model;
- `tgt_subword_model`: path of target side subword model;
- `src_subword_nbest`: number of candidates for subword regularization (sentencepiece), source side;
- `tgt_subword_nbest`: number of candidates for subword regularization (sentencepiece), target_side;
- `src_subword_alpha`: smoothing parameter for sentencepiece regularization / dropout probability for BPE, source side;
- `tgt_subword_alpha`: smoothing parameter for sentencepiece regularization / dropout probability for BPE, target side.

#### [OpenNMT Tokenizer](https://github.com/opennmt/Tokenizer)

Transform name: `onmt_tokenize`

Class: `onmt.transforms.tokenize.ONMTTokenizerTransform`

Additional options are available:
- `src_subword_type`: type of subword model for source side (from `["none", "sentencepiece", "bpe"]`);
- `tgt_subword_type`: type of subword model for target side (from `["none", "sentencepiece", "bpe"]`);
- `src_onmttok_kwargs`: additional kwargs for pyonmttok Tokenizer class, source side;
- `tgt_onmttok_kwargs`: additional kwargs for pyonmttok Tokenizer class, target side.

#### [SentencePiece](https://github.com/google/sentencepiece)

Transform name: `sentencepiece`

Class: `onmt.transforms.tokenize.SentencePieceTransform`

The `src_subword_model` and `tgt_subword_model` should be valid sentencepiece models.

#### BPE ([subword-nmt](https://github.com/rsennrich/subword-nmt))

Transform name: `bpe`

Class: `onmt.transforms.tokenize.BPETransform`

The `src_subword_model` and `tgt_subword_model` should be valid BPE models.

### BART-style noise

BART-style noise is composed of several parts, as described in [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461).

These different types of noise can be controlled with the following options:

- `permute_sent_ratio`: proportion of sentences to permute (default boundaries are ".", "?" and "!");
- `rotate_ratio`: proportion of inputs to permute;
- `insert_ratio`: proportion of additional random tokens to insert;
- `random_ratio`: proportion of tokens to replace with random;
- `mask_ratio`: proportion of words/subwords to mask;
- `mask_length`: length of masking window (from `["subword", "word", "span-poisson"]`);
- `poisson_lambda`: $\lambda$ value for Poisson distribution to sample span length (in the case of `mask_length` set to `span-poisson`);
- `replace_length`: when masking N tokens, replace with 0, 1, " "or N tokens. (set to -1 for N).

### SwitchOut and sampling

#### [SwitchOut](https://arxiv.org/abs/1808.07512)

Transform name: `switchout`

Class: `onmt.transforms.sampling.SwitchOutTransform`

Options:

- `switchout_temperature`: sampling temperature for SwitchOut.

#### Drop some tokens

Transform name: `tokendrop`

Class: `onmt.transforms.sampling.TokenDropTransform`

Options:

- `tokendrop_temperature`: sampling temperature for token deletion.

#### Mask some tokens

Transform name: `tokenmask`

Class: `onmt.transforms.sampling.TokenMaskTransform`

Options:

- `tokenmask_temperature`: sampling temperature for token masking.

## How can I create custom on-the-fly data transforms?

The code is easily extendable with custom transforms inheriting from the `Transform` base class.

You can for instance have a look at the `FilterTooLongTransform` class as a template:

```python
@register_transform(name='filtertoolong')
class FilterTooLongTransform(Transform):
    """Filter out sentence that are too long."""

    @classmethod
    def add_options(cls, parser):
        """Avalilable options relate to this Transform."""
        group = parser.add_argument_group("Transform/Filter")
        group.add("--src_seq_length", "-src_seq_length", type=int, default=200,
                  help="Maximum source sequence length.")
        group.add("--tgt_seq_length", "-tgt_seq_length", type=int, default=200,
                  help="Maximum target sequence length.")

    def _parse_opts(self):
        self.src_seq_length = self.opts.src_seq_length
        self.tgt_seq_length = self.opts.tgt_seq_length

    def apply(self, example, is_train=False, stats=None, **kwargs):
        """Return None if too long else return as is."""
        if (len(example['src']) > self.src_seq_length or
                len(example['tgt']) > self.tgt_seq_length):
            if stats is not None:
                stats.update(FilterTooLongStats())
            return None
        else:
            return example

    def _repr_args(self):
        """Return str represent key arguments for class."""
        return '{}={}, {}={}'.format(
            'src_seq_length', self.src_seq_length,
            'tgt_seq_length', self.tgt_seq_length
        )
```

Methods:
- `add_options` allows to add custom options that would be necessary for the transform configuration;
- `_parse_opts` allows to parse options introduced in `add_options` when initialize;
- `apply` is where the transform happens;
- `_repr_args` is for clean logging purposes.

As you can see, there is the `@register_transform` wrapper before the class definition. This will allow for the class to be automatically detected (if put in the proper `transforms` folder) and usable in your training configurations through its `name` argument.

You could also collect statistics for your custom transform by creating a class inheriting `ObservableStats`:

```python
class FilterTooLongStats(ObservableStats):
    """Runing statistics for FilterTooLongTransform."""
    __slots__ = ["filtered"]

    def __init__(self):
        self.filtered = 1

    def update(self, other: "FilterTooLongStats"):
        self.filtered += other.filtered
```

NOTE:
- Add elements to keep track in the `__init__` and also `__slot__` to make it lightweight;
- Supply update logic in `update` method;
- (Optional) override `__str__` to change default log message format;
- Instantiate and passing the statistic object in the `apply` method of the corresponding transform class;
- statistics will be gathered per corpus per worker, but only first worker will report for its shard by default.

The `example` argument of `apply` is a `dict` of the form:
```
{
	"src": <source string>,
	"tgt": <target string>,
	"align": <alignment pharaoh string> # optional
}
```

This is defined in `onmt.inputters.corpus.ParallelCorpus.load`. This class is not easily extendable for now but it can be considered for future developments. For instance, we could create some `CustomParallelCorpus` class that would handle other kind of inputs.


## Can I get word alignments while translating?

### Raw alignments from averaging Transformer attention heads

Currently, we support producing word alignment while translating for Transformer based models. Using `-report_align` when calling `translate.py` will output the inferred alignments in Pharaoh format. Those alignments are computed from an argmax on the average of the attention heads of the *second to last* decoder layer. The resulting alignment src-tgt (Pharaoh) will be pasted to the translation sentence, separated by ` ||| `.
Note: The *second to last* default behaviour was empirically determined. It is not the same as the paper (they take the *penultimate* layer), probably because of slight differences in the architecture.

* alignments use the standard "Pharaoh format", where a pair `i-j` indicates the i<sub>th</sub> word of source language is aligned to j<sub>th</sub> word of target language.
* Example: {'src': 'das stimmt nicht !'; 'output': 'that is not true ! ||| 0-0 0-1 1-2 2-3 1-4 1-5 3-6'}
* Using the`-tgt` option when calling `translate.py`, we output alignments between the source and the gold target rather than the inferred target, assuming we're doing evaluation.
* To convert subword alignments to word alignments, or symetrize bidirectional alignments, please refer to the [lilt scripts](https://github.com/lilt/alignment-scripts).

### Supervised learning on a specific head

The quality of output alignments can be further improved by providing reference alignments while training. This will invoke multi-task learning on translation and alignment. This is an implementation based on the paper [Jointly Learning to Align and Translate with Transformer Models](https://arxiv.org/abs/1909.02074).

The data need to be preprocessed with the reference alignments in order to learn the supervised task.
The reference alignment file(s) can for instance be generated by [GIZA++](https://github.com/moses-smt/mgiza/) or [fast_align](https://github.com/clab/fast_align).

In order to learn the supervised task, you can set for each dataset the path of its alignment file in the YAML configuration file:

```yaml
<your_config>.yaml

...

# Corpus opts:
data:
    corpus_1:
        path_src: toy-ende/src-train1.txt
        path_tgt: toy-ende/tgt-train1.txt
        # src - tgt alignments in pharaoh format
        path_align: toy-ende/src-tgt.align
        transforms: []
        weight: 1
    valid:
        path_src: toy-ende/src-val.txt
        path_tgt: toy-ende/tgt-val.txt
        transforms: []

...
```

**Notes**:
- Most of the transforms are for now incompatible with the joint alignment learning pipeline, because most of them make modifications at the token level, hence alignments would be made invalid.
- There should be no blank lines in the alignment files provided.

Training options to learn such alignments are:

* `-lambda_align`: set the value > 0.0 to enable joint align training, the paper suggests 0.05;
* `-alignment_layer`: indicate the index of the decoder layer;
* `-alignment_heads`:  number of alignment heads for the alignment task - should be set to 1 for the supervised task, and preferably kept to default (or same as `num_heads`) for the average task;
* `-full_context_alignment`: do full context decoder pass (no future mask) when computing alignments. This will slow down the training (~12% in terms of tok/s) but will be beneficial to generate better alignment.


## How can I update a checkpoint's vocabulary?

New vocabulary can be used to continue training from a checkpoint. Existing vocabulary embeddings will be mapped to the new vocabulary, and new vocabulary tokens will be initialized as usual.

Run `onmt_build_vocab` as usual with the new dataset. New vocabulary files will be created.

Training options to perform vocabulary update are:

* `-update_vocab`: set this option
* `-reset_optim`: set the value to "states"
* `-train_from`: checkpoint path


## How can I use source word features?

Extra information can be added to the words in the source sentences by defining word features. 

Features should be defined in a separate file using blank spaces as a separator and with each row corresponding to a source sentence. An example of the input files:

data.src
```
however, according to the logs, she is hard-working.
```

feat.txt
```
A C C C C A A B
```

Prior tokenization is not necessary, features will be inferred by using the `FeatInferTransform` transform if tokenization has been applied.

No previous tokenization:
```
SRC: this is a test.
FEATS: A A A B
TOKENIZED SRC: this is a test ■.
RESULT: A A A B <null>
```

Previously tokenized:
```
SRC: this is a test ■.
FEATS: A A A B A
RESULT: A A A B A
```

**Notes**
- `FilterFeatsTransform` and `FeatInferTransform` are required in order to ensure the functionality.
- Not possible to do shared embeddings (at least with `feat_merge: concat` method)

Sample config file:

```
data:
    dummy:
        path_src: data/train/data.src
        path_tgt: data/train/data.tgt
        src_feats:
            feat_0: data/train/data.src.feat_0
            feat_1: data/train/data.src.feat_1
        transforms: [filterfeats, onmt_tokenize, inferfeats, filtertoolong]
        weight: 1
    valid:
        path_src: data/valid/data.src
        path_tgt: data/valid/data.tgt
        src_feats:
            feat_0: data/valid/data.src.feat_0
            feat_1: data/valid/data.src.feat_1
        transforms: [filterfeats, onmt_tokenize, inferfeats]

# Transform options
reversible_tokenization: "joiner"
prior_tokenization: true

# Vocab opts
src_vocab: exp/data.vocab.src
tgt_vocab: exp/data.vocab.tgt
src_feats_vocab: 
    feat_0: exp/data.vocab.feat_0
    feat_1: exp/data.vocab.feat_1
feat_merge: "sum"
```

During inference you can pass features by using the `--src_feats` argument. `src_feats` is expected to be a Python like dict, mapping feature names with their data file.

```
{'feat_0': '../data.txt.feats0', 'feat_1': '../data.txt.feats1'}
```

**Important note!** During inference, input sentence is expected to be tokenized. Therefore feature inferring should be handled prior to running the translate command. Example:

```bash
python translate.py -model model_step_10.pt -src ../data.txt.tok -output ../data.out --src_feats "{'feat_0': '../data.txt.feats0', 'feat_1': '../data.txt.feats1'}"
```

When using the Transformer architecture make sure the following options are appropriately set:

- `src_word_vec_size` and `tgt_word_vec_size` or `word_vec_size`
- `feat_merge`: how to handle features vecs
- `feat_vec_size` and maybe `feat_vec_exponent`


## How can I set up a translation server ?
A REST server was implemented to serve OpenNMT-py models. A discussion is opened on the OpenNMT forum: [discussion link](https://forum.opennmt.net/t/simple-opennmt-py-rest-server/1392).

### I. How it works?
---
The idea behind the translation server is to make a entry point for translation with multiple models. The server will receive natural text input, tokenize it, translate it following the decoding parameters, detokenize the result and return natural text output.

A server configuration file (`./available_models/conf.json`) is required. It contains the path of the model checkpoint, the path of tokenizer's data along with other inference parameters.

##### Configuration:
- `models_root`: (opt) folder containing model checkpoints, [default: `./available_models`]
- `models`: list of objects such as :
  - `id`: (opt) manually assign an id (int), [default: value from counter]
  - `name`: (opt) assing a name (str)
  - `model`: (required) path to checkpoint file i.e. `*.pt`
  - `timeout`: (opt) interval (seconds) before unloading, reset at each translation using the model
  - `load`: (opt) whether to load the model at start [default: False]
  - `on_timeout`: (opt) what to do on timeout: `unload` removes everything; `to_cpu` transfer the model to RAM (from GPU memory) this is faster to reload but takes RAM.
  - `opt`: (opt) dict of translation options (see method `translate_opts` in `./opts.py`)
  - `tokenizer`: (opt) set tokenizer options (if any), such as:
    - `type`: (str) value in `{sentencepiece, pyonmttok}`.
    - `model`: (str) path to tokenizer model
  - `ct2_translator_args` and `ct2_translate_batch_args`: (opt) [CTranslate2](https://github.com/OpenNMT/CTranslate2) parameters to use CTranslate2 inference engine. Parameters appearing simultaneously in `opt` and `ct2_(...)_args` must be identical.
  - `ct2_model`: (opt) CTranslate2 model path.


##### Example
```json
{
    "models_root": "./available_models",
    "models": [
        {   
            "id": 100,
            "model": "model_0.pt",
            "timeout": 600,
            "on_timeout": "to_cpu",
            "load": true,
            "opt": {
                "gpu": 0,
                "beam_size": 5
            },  
            "tokenizer": {
                "type": "sentencepiece",
                "model": "wmtenfr.model"
            }   
        },{ 
            "model": "model_0.light.pt",
            "timeout": -1, 
            "on_timeout": "unload",
            "model_root": "../other_models",
            "opt": {
                "batch_size": 1,
                "beam_size": 10
            }   
        }   
    ]   
}
```

### II. How to start the server without Docker ?
---
##### 0. Get the code
The translation server has been merged into onmt-py `master` branch.   
Keep in line with master for last fix / improvements.
##### 1. Install `flask`
```bash
pip install flask
```

##### 2. Put some models
```bash
mkdir available_models/
cp $path_to_my_model available_models
```

##### 3. Start the server
```bash
export IP="0.0.0.0"
export PORT=5000
export URL_ROOT="/translator"
export CONFIG="./available_models/conf.json"

# NOTE that these parameters are optionnal
# here, we explicitely set to default values
python server.py --ip $IP --port $PORT --url_root $URL_ROOT --config $CONFIG
```

### III. How to start the server with Docker ?
---

1. Add the following libraries a requirement file `requirements.docker.txt`.
```
ConfigArgParse==1.2.3
Flask==1.1.2
Flask-Cors==3.0.10
pyonmttok==1.22.1
torchtext==0.4.0
waitress==1.4.4
```

2. Create a `Dockerfile`
```docker
FROM pytorch/pytorch:1.6.0-cuda10.1-cudnn7-runtime
WORKDIR /usr/src/app

COPY requirements.docker.txt ./requirements.txt
RUN pip install --no-cache-dir -r requirements.txt

# You can copy or use a docker volume, especially for the model and config data
COPY server.py ./
COPY tools ./tools
COPY available_models ./available_models
COPY onmt ./onmt

CMD ["python", "./server.py"]
```

3. Build the image and run container
```bash
docker build -t opennmt_server .
docker run -it --rm -p 5000:5000 opennmt_server
```

### IV. How to use the API ?
----
This section contains a fex examples of the API. For details on all routes, see `./bin/server.py`.
##### 0. Set the hostname
```bash
export HOST="127.0.0.1"
```
##### 1. List models

```bash
curl http://$HOST:$PORT$URL_ROOT/models
```

**Result (example):**
```json
{
  "available": [
    "wmt14.en-de_acc_69.22_ppl_4.33_e9.pt",
    "wmt14.en-de_acc_69.22_ppl_4.33_e9.light.pt"
  ],
  "loaded": []
}
```
##### 2. Translate
(this example involves subwords)
```bash
curl -i -X POST -H "Content-Type: application/json" \
    -d '[{"src": "this is a test for model 0", "id": 0}]' \
    http://$HOST:$PORT$URL_ROOT/translate

```
**Result:**
```json
{
  "model_id": 0,
  "result": "\u2581die \u2581Formen kant en \u2581( K \u00f6r ner ) \u2581des \u2581Stahl g u\u00df form .\n",
  "status": "ok",
  "time": {
    "total": 8.510261535644531,
    "translation": 8.509992599487305,
    "writing_src": 0.0002689361572265625
  }
}
```