File size: 21,025 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

# Library

The example notebook (available [here](https://github.com/OpenNMT/OpenNMT-py/blob/master/docs/source/examples/Library.ipynb)) should be able to run as a standalone execution, provided `onmt` is in the path (installed via `pip` for instance).

Some parts may not be 100% 'library-friendly' but it's mostly workable.

### Import a few modules and functions that will be necessary


```python
import yaml
import torch
import torch.nn as nn
from argparse import Namespace
from collections import defaultdict, Counter
```


```python
import onmt
from onmt.inputters.inputter import _load_vocab, _build_fields_vocab, get_fields, IterOnDevice
from onmt.inputters.corpus import ParallelCorpus
from onmt.inputters.dynamic_iterator import DynamicDatasetIter
from onmt.translate import GNMTGlobalScorer, Translator, TranslationBuilder
from onmt.utils.misc import set_random_seed
```

### Enable logging


```python
# enable logging
from onmt.utils.logging import init_logger, logger
init_logger()
```




    <RootLogger root (INFO)>



### Set random seed


```python
is_cuda = torch.cuda.is_available()
set_random_seed(1111, is_cuda)
```

### Retrieve data

To make a proper example, we will need some data, as well as some vocabulary(ies).

Let's take the same data as in the [quickstart](https://opennmt.net/OpenNMT-py/quickstart.html):


```python
!wget https://s3.amazonaws.com/opennmt-trainingdata/toy-ende.tar.gz
```

    --2020-09-25 15:28:05--  https://s3.amazonaws.com/opennmt-trainingdata/toy-ende.tar.gz
    Resolving s3.amazonaws.com (s3.amazonaws.com)... 52.217.18.38
    Connecting to s3.amazonaws.com (s3.amazonaws.com)|52.217.18.38|:443... connected.
    HTTP request sent, awaiting response... 200 OK
    Length: 1662081 (1,6M) [application/x-gzip]
    Saving to: ‘toy-ende.tar.gz.5’
    
    toy-ende.tar.gz.5   100%[===================>]   1,58M  2,33MB/s    in 0,7s    
    
    2020-09-25 15:28:07 (2,33 MB/s) - ‘toy-ende.tar.gz.5’ saved [1662081/1662081]
    



```python
!tar xf toy-ende.tar.gz
```


```python
ls toy-ende
```

    config.yaml  src-test.txt   src-val.txt   tgt-train.txt
    run/         src-train.txt  tgt-test.txt  tgt-val.txt


### Prepare data and vocab

As for any use case of OpenNMT-py 2.0, we can start by creating a simple YAML configuration with our datasets. This is the easiest way to build the proper `opts` `Namespace` that will be used to create the vocabulary(ies).


```python
yaml_config = """
## Where the samples will be written
save_data: toy-ende/run/example
## Where the vocab(s) will be written
src_vocab: toy-ende/run/example.vocab.src
tgt_vocab: toy-ende/run/example.vocab.tgt
# Corpus opts:
data:
    corpus:
        path_src: toy-ende/src-train.txt
        path_tgt: toy-ende/tgt-train.txt
        transforms: []
        weight: 1
    valid:
        path_src: toy-ende/src-val.txt
        path_tgt: toy-ende/tgt-val.txt
        transforms: []
"""
config = yaml.safe_load(yaml_config)
with open("toy-ende/config.yaml", "w") as f:
    f.write(yaml_config)
```


```python
from onmt.utils.parse import ArgumentParser
parser = DynamicArgumentParser(description='build_vocab.py')
```


```python
from onmt.opts import dynamic_prepare_opts
dynamic_prepare_opts(parser, build_vocab_only=True)
```


```python
base_args = (["-config", "toy-ende/config.yaml", "-n_sample", "10000"])
opts, unknown = parser.parse_known_args(base_args)
```


```python
opts
```




    Namespace(config='toy-ende/config.yaml', data="{'corpus': {'path_src': 'toy-ende/src-train.txt', 'path_tgt': 'toy-ende/tgt-train.txt', 'transforms': [], 'weight': 1}, 'valid': {'path_src': 'toy-ende/src-val.txt', 'path_tgt': 'toy-ende/tgt-val.txt', 'transforms': []}}", insert_ratio=0.0, mask_length='subword', mask_ratio=0.0, n_sample=10000, src_onmttok_kwargs="{'mode': 'none'}", tgt_onmttok_kwargs="{'mode': 'none'}", overwrite=False, permute_sent_ratio=0.0, poisson_lambda=0.0, random_ratio=0.0, replace_length=-1, rotate_ratio=0.5, save_config=None, save_data='toy-ende/run/example', seed=-1, share_vocab=False, skip_empty_level='warning', src_seq_length=200, src_subword_model=None, src_subword_type='none', src_vocab=None, subword_alpha=0, subword_nbest=1, switchout_temperature=1.0, tgt_seq_length=200, tgt_subword_model=None, tgt_subword_type='none', tgt_vocab=None, tokendrop_temperature=1.0, tokenmask_temperature=1.0, transforms=[])




```python
from onmt.bin.build_vocab import build_vocab_main
build_vocab_main(opts)
```

    [2020-09-25 15:28:08,068 INFO] Parsed 2 corpora from -data.
    [2020-09-25 15:28:08,069 INFO] Counter vocab from 10000 samples.
    [2020-09-25 15:28:08,070 INFO] Save 10000 transformed example/corpus.
    [2020-09-25 15:28:08,070 INFO] corpus's transforms: TransformPipe()
    [2020-09-25 15:28:08,101 INFO] Loading ParallelCorpus(toy-ende/src-train.txt, toy-ende/tgt-train.txt, align=None)...
    [2020-09-25 15:28:08,320 INFO] Just finished the first loop
    [2020-09-25 15:28:08,320 INFO] Counters src:24995
    [2020-09-25 15:28:08,321 INFO] Counters tgt:35816



```python
ls toy-ende/run
```

    example.vocab.src  example.vocab.tgt  sample/


We just created our source and target vocabularies, respectively `toy-ende/run/example.vocab.src` and `toy-ende/run/example.vocab.tgt`.

### Build fields

We can build the fields from the text files that were just created.


```python
src_vocab_path = "toy-ende/run/example.vocab.src"
tgt_vocab_path = "toy-ende/run/example.vocab.tgt"
```


```python
# initialize the frequency counter
counters = defaultdict(Counter)
# load source vocab
_src_vocab, _src_vocab_size = _load_vocab(
    src_vocab_path,
    'src',
    counters)
# load target vocab
_tgt_vocab, _tgt_vocab_size = _load_vocab(
    tgt_vocab_path,
    'tgt',
    counters)
```

    [2020-09-25 15:28:08,495 INFO] Loading src vocabulary from toy-ende/run/example.vocab.src
    [2020-09-25 15:28:08,554 INFO] Loaded src vocab has 24995 tokens.
    [2020-09-25 15:28:08,562 INFO] Loading tgt vocabulary from toy-ende/run/example.vocab.tgt
    [2020-09-25 15:28:08,617 INFO] Loaded tgt vocab has 35816 tokens.



```python
# initialize fields
src_nfeats, tgt_nfeats = 0, 0 # do not support word features for now
fields = get_fields(
    'text', src_nfeats, tgt_nfeats)
```


```python
fields
```




    {'src': <onmt.inputters.text_dataset.TextMultiField at 0x7fca93802c50>,
     'tgt': <onmt.inputters.text_dataset.TextMultiField at 0x7fca93802f60>,
     'indices': <torchtext.data.field.Field at 0x7fca93802940>}




```python
# build fields vocab
share_vocab = False
vocab_size_multiple = 1
src_vocab_size = 30000
tgt_vocab_size = 30000
src_words_min_frequency = 1
tgt_words_min_frequency = 1
vocab_fields = _build_fields_vocab(
    fields, counters, 'text', share_vocab,
    vocab_size_multiple,
    src_vocab_size, src_words_min_frequency,
    tgt_vocab_size, tgt_words_min_frequency)
```

    [2020-09-25 15:28:08,699 INFO]  * tgt vocab size: 30004.
    [2020-09-25 15:28:08,749 INFO]  * src vocab size: 24997.


An alternative way of creating these fields is to run `onmt_train` without actually training, to just output the necessary files.

### Prepare for training: model and optimizer creation

Let's get a few fields/vocab related variables to simplify the model creation a bit:


```python
src_text_field = vocab_fields["src"].base_field
src_vocab = src_text_field.vocab
src_padding = src_vocab.stoi[src_text_field.pad_token]

tgt_text_field = vocab_fields['tgt'].base_field
tgt_vocab = tgt_text_field.vocab
tgt_padding = tgt_vocab.stoi[tgt_text_field.pad_token]
```

Next we specify the core model itself. Here we will build a small model with an encoder and an attention based input feeding decoder. Both models will be RNNs and the encoder will be bidirectional


```python
emb_size = 100
rnn_size = 500
# Specify the core model.

encoder_embeddings = onmt.modules.Embeddings(emb_size, len(src_vocab),
                                             word_padding_idx=src_padding)

encoder = onmt.encoders.RNNEncoder(hidden_size=rnn_size, num_layers=1,
                                   rnn_type="LSTM", bidirectional=True,
                                   embeddings=encoder_embeddings)

decoder_embeddings = onmt.modules.Embeddings(emb_size, len(tgt_vocab),
                                             word_padding_idx=tgt_padding)
decoder = onmt.decoders.decoder.InputFeedRNNDecoder(
    hidden_size=rnn_size, num_layers=1, bidirectional_encoder=True, 
    rnn_type="LSTM", embeddings=decoder_embeddings)

device = "cuda" if torch.cuda.is_available() else "cpu"
model = onmt.models.model.NMTModel(encoder, decoder)
model.to(device)

# Specify the tgt word generator and loss computation module
model.generator = nn.Sequential(
    nn.Linear(rnn_size, len(tgt_vocab)),
    nn.LogSoftmax(dim=-1)).to(device)

loss = onmt.utils.loss.NMTLossCompute(
    criterion=nn.NLLLoss(ignore_index=tgt_padding, reduction="sum"),
    generator=model.generator)
```

Now we set up the optimizer. This could be a core torch optim class, or our wrapper which handles learning rate updates and gradient normalization automatically.


```python
lr = 1
torch_optimizer = torch.optim.SGD(model.parameters(), lr=lr)
optim = onmt.utils.optimizers.Optimizer(
    torch_optimizer, learning_rate=lr, max_grad_norm=2)
```

### Create the training and validation data iterators

Now we need to create the dynamic dataset iterator.

This is not very 'library-friendly' for now because of the way the `DynamicDatasetIter` constructor is defined. It may evolve in the future.


```python
src_train = "toy-ende/src-train.txt"
tgt_train = "toy-ende/tgt-train.txt"
src_val = "toy-ende/src-val.txt"
tgt_val = "toy-ende/tgt-val.txt"

# build the ParallelCorpus
corpus = ParallelCorpus("corpus", src_train, tgt_train)
valid = ParallelCorpus("valid", src_val, tgt_val)
```


```python
# build the training iterator
train_iter = DynamicDatasetIter(
    corpora={"corpus": corpus},
    corpora_info={"corpus": {"weight": 1}},
    transforms={},
    fields=vocab_fields,
    is_train=True,
    batch_type="tokens",
    batch_size=4096,
    batch_size_multiple=1,
    data_type="text")
```


```python
# make sure the iteration happens on GPU 0 (-1 for CPU, N for GPU N)
train_iter = iter(IterOnDevice(train_iter, 0))
```


```python
# build the validation iterator
valid_iter = DynamicDatasetIter(
    corpora={"valid": valid},
    corpora_info={"valid": {"weight": 1}},
    transforms={},
    fields=vocab_fields,
    is_train=False,
    batch_type="sents",
    batch_size=8,
    batch_size_multiple=1,
    data_type="text")
```


```python
valid_iter = IterOnDevice(valid_iter, 0)
```

### Training

Finally we train.


```python
report_manager = onmt.utils.ReportMgr(
    report_every=50, start_time=None, tensorboard_writer=None)

trainer = onmt.Trainer(model=model,
                       train_loss=loss,
                       valid_loss=loss,
                       optim=optim,
                       report_manager=report_manager,
                       dropout=[0.1])

trainer.train(train_iter=train_iter,
              train_steps=1000,
              valid_iter=valid_iter,
              valid_steps=500)
```

    [2020-09-25 15:28:15,184 INFO] Start training loop and validate every 500 steps...
    [2020-09-25 15:28:15,185 INFO] corpus's transforms: TransformPipe()
    [2020-09-25 15:28:15,187 INFO] Loading ParallelCorpus(toy-ende/src-train.txt, toy-ende/tgt-train.txt, align=None)...
    [2020-09-25 15:28:21,140 INFO] Step 50/ 1000; acc:   7.52; ppl: 8832.29; xent: 9.09; lr: 1.00000; 18916/18871 tok/s;      6 sec
    [2020-09-25 15:28:24,869 INFO] Loading ParallelCorpus(toy-ende/src-train.txt, toy-ende/tgt-train.txt, align=None)...
    [2020-09-25 15:28:27,121 INFO] Step 100/ 1000; acc:   9.34; ppl: 1840.06; xent: 7.52; lr: 1.00000; 18911/18785 tok/s;     12 sec
    [2020-09-25 15:28:33,048 INFO] Step 150/ 1000; acc:  10.35; ppl: 1419.18; xent: 7.26; lr: 1.00000; 19062/19017 tok/s;     18 sec
    [2020-09-25 15:28:37,019 INFO] Loading ParallelCorpus(toy-ende/src-train.txt, toy-ende/tgt-train.txt, align=None)...
    [2020-09-25 15:28:39,022 INFO] Step 200/ 1000; acc:  11.14; ppl: 1127.44; xent: 7.03; lr: 1.00000; 19084/18911 tok/s;     24 sec
    [2020-09-25 15:28:45,073 INFO] Step 250/ 1000; acc:  12.46; ppl: 912.13; xent: 6.82; lr: 1.00000; 18575/18570 tok/s;     30 sec
    [2020-09-25 15:28:49,301 INFO] Loading ParallelCorpus(toy-ende/src-train.txt, toy-ende/tgt-train.txt, align=None)...
    [2020-09-25 15:28:51,151 INFO] Step 300/ 1000; acc:  13.04; ppl: 779.50; xent: 6.66; lr: 1.00000; 18394/18307 tok/s;     36 sec
    [2020-09-25 15:28:57,316 INFO] Step 350/ 1000; acc:  14.04; ppl: 685.48; xent: 6.53; lr: 1.00000; 18339/18173 tok/s;     42 sec
    [2020-09-25 15:29:02,117 INFO] Loading ParallelCorpus(toy-ende/src-train.txt, toy-ende/tgt-train.txt, align=None)...
    [2020-09-25 15:29:03,576 INFO] Step 400/ 1000; acc:  14.99; ppl: 590.20; xent: 6.38; lr: 1.00000; 18090/18029 tok/s;     48 sec
    [2020-09-25 15:29:09,546 INFO] Step 450/ 1000; acc:  16.00; ppl: 524.51; xent: 6.26; lr: 1.00000; 18726/18536 tok/s;     54 sec
    [2020-09-25 15:29:14,585 INFO] Loading ParallelCorpus(toy-ende/src-train.txt, toy-ende/tgt-train.txt, align=None)...
    [2020-09-25 15:29:15,596 INFO] Step 500/ 1000; acc:  16.78; ppl: 453.38; xent: 6.12; lr: 1.00000; 17877/17980 tok/s;     60 sec
    [2020-09-25 15:29:15,597 INFO] valid's transforms: TransformPipe()
    [2020-09-25 15:29:15,599 INFO] Loading ParallelCorpus(toy-ende/src-val.txt, toy-ende/tgt-val.txt, align=None)...
    [2020-09-25 15:29:24,528 INFO] Validation perplexity: 295.1
    [2020-09-25 15:29:24,529 INFO] Validation accuracy: 17.6533
    [2020-09-25 15:29:30,592 INFO] Step 550/ 1000; acc:  17.47; ppl: 421.26; xent: 6.04; lr: 1.00000; 7726/7610 tok/s;     75 sec
    [2020-09-25 15:29:36,055 INFO] Loading ParallelCorpus(toy-ende/src-train.txt, toy-ende/tgt-train.txt, align=None)...
    [2020-09-25 15:29:36,695 INFO] Step 600/ 1000; acc:  18.95; ppl: 354.44; xent: 5.87; lr: 1.00000; 17470/17598 tok/s;     82 sec
    [2020-09-25 15:29:42,794 INFO] Step 650/ 1000; acc:  19.60; ppl: 328.47; xent: 5.79; lr: 1.00000; 18994/18793 tok/s;     88 sec
    [2020-09-25 15:29:48,635 INFO] Loading ParallelCorpus(toy-ende/src-train.txt, toy-ende/tgt-train.txt, align=None)...
    [2020-09-25 15:29:48,924 INFO] Step 700/ 1000; acc:  20.57; ppl: 285.48; xent: 5.65; lr: 1.00000; 17856/17788 tok/s;     94 sec
    [2020-09-25 15:29:54,898 INFO] Step 750/ 1000; acc:  21.97; ppl: 249.06; xent: 5.52; lr: 1.00000; 19030/18924 tok/s;    100 sec
    [2020-09-25 15:30:01,233 INFO] Step 800/ 1000; acc:  22.66; ppl: 228.54; xent: 5.43; lr: 1.00000; 17571/17471 tok/s;    106 sec
    [2020-09-25 15:30:01,357 INFO] Loading ParallelCorpus(toy-ende/src-train.txt, toy-ende/tgt-train.txt, align=None)...
    [2020-09-25 15:30:07,345 INFO] Step 850/ 1000; acc:  24.32; ppl: 193.65; xent: 5.27; lr: 1.00000; 18344/18313 tok/s;    112 sec
    [2020-09-25 15:30:11,363 INFO] Loading ParallelCorpus(toy-ende/src-train.txt, toy-ende/tgt-train.txt, align=None)...
    [2020-09-25 15:30:13,487 INFO] Step 900/ 1000; acc:  24.93; ppl: 177.65; xent: 5.18; lr: 1.00000; 18293/18105 tok/s;    118 sec
    [2020-09-25 15:30:19,670 INFO] Step 950/ 1000; acc:  26.33; ppl: 157.10; xent: 5.06; lr: 1.00000; 17791/17746 tok/s;    124 sec
    [2020-09-25 15:30:24,072 INFO] Loading ParallelCorpus(toy-ende/src-train.txt, toy-ende/tgt-train.txt, align=None)...
    [2020-09-25 15:30:25,820 INFO] Step 1000/ 1000; acc:  27.47; ppl: 137.64; xent: 4.92; lr: 1.00000; 17942/17962 tok/s;    131 sec
    [2020-09-25 15:30:25,822 INFO] Loading ParallelCorpus(toy-ende/src-val.txt, toy-ende/tgt-val.txt, align=None)...
    [2020-09-25 15:30:34,665 INFO] Validation perplexity: 241.801
    [2020-09-25 15:30:34,666 INFO] Validation accuracy: 20.2837





    <onmt.utils.statistics.Statistics at 0x7fca934e8e80>



### Translate

For translation, we can build a "traditional" (as opposed to dynamic) dataset for now.


```python
src_data = {"reader": onmt.inputters.str2reader["text"](), "data": src_val}
tgt_data = {"reader": onmt.inputters.str2reader["text"](), "data": tgt_val}
_readers, _data = onmt.inputters.Dataset.config(
    [('src', src_data), ('tgt', tgt_data)])
```


```python
dataset = onmt.inputters.Dataset(
    vocab_fields, readers=_readers, data=_data,
    sort_key=onmt.inputters.str2sortkey["text"])
```


```python
data_iter = onmt.inputters.OrderedIterator(
            dataset=dataset,
            device="cuda",
            batch_size=10,
            train=False,
            sort=False,
            sort_within_batch=True,
            shuffle=False
        )
```


```python
src_reader = onmt.inputters.str2reader["text"]
tgt_reader = onmt.inputters.str2reader["text"]
scorer = GNMTGlobalScorer(alpha=0.7, 
                          beta=0., 
                          length_penalty="avg", 
                          coverage_penalty="none")
gpu = 0 if torch.cuda.is_available() else -1
translator = Translator(model=model, 
                        fields=vocab_fields, 
                        src_reader=src_reader, 
                        tgt_reader=tgt_reader, 
                        global_scorer=scorer,
                        gpu=gpu)
builder = onmt.translate.TranslationBuilder(data=dataset, 
                                            fields=vocab_fields)
```

**Note**: translations will be very poor, because of the very low quantity of data, the absence of proper tokenization, and the brevity of the training.


```python
for batch in data_iter:
    trans_batch = translator.translate_batch(
        batch=batch, src_vocabs=[src_vocab],
        attn_debug=False)
    translations = builder.from_batch(trans_batch)
    for trans in translations:
        print(trans.log(0))
    break
```

    
    SENT 0: ['Parliament', 'Does', 'Not', 'Support', 'Amendment', 'Freeing', 'Tymoshenko']
    PRED 0: Parlament das Parlament über die Europäische Parlament , die sich in der Lage in der Lage ist , die es in der Lage sind .
    PRED SCORE: -1.5935
    
    
    SENT 0: ['Today', ',', 'the', 'Ukraine', 'parliament', 'dismissed', ',', 'within', 'the', 'Code', 'of', 'Criminal', 'Procedure', 'amendment', ',', 'the', 'motion', 'to', 'revoke', 'an', 'article', 'based', 'on', 'which', 'the', 'opposition', 'leader', ',', 'Yulia', 'Tymoshenko', ',', 'was', 'sentenced', '.']
    PRED 0: In der Nähe des Hotels , die in der Lage , die sich in der Lage ist , in der Lage , die in der Lage , die in der Lage ist .
    PRED SCORE: -1.7173
    
    
    SENT 0: ['The', 'amendment', 'that', 'would', 'lead', 'to', 'freeing', 'the', 'imprisoned', 'former', 'Prime', 'Minister', 'was', 'revoked', 'during', 'second', 'reading', 'of', 'the', 'proposal', 'for', 'mitigation', 'of', 'sentences', 'for', 'economic', 'offences', '.']
    PRED 0: Die Tatsache , die sich in der Lage in der Lage ist , die für eine Antwort der Entwicklung für die Entwicklung von Präsident .
    PRED SCORE: -1.6834
    
    
    SENT 0: ['In', 'October', ',', 'Tymoshenko', 'was', 'sentenced', 'to', 'seven', 'years', 'in', 'prison', 'for', 'entering', 'into', 'what', 'was', 'reported', 'to', 'be', 'a', 'disadvantageous', 'gas', 'deal', 'with', 'Russia', '.']
    PRED 0: In der Nähe wurde die Menschen in der Lage ist , die sich in der Lage <unk> .
    PRED SCORE: -1.5765
    
    
    SENT 0: ['The', 'verdict', 'is', 'not', 'yet', 'final;', 'the', 'court', 'will', 'hear', 'Tymoshenko', '&apos;s', 'appeal', 'in', 'December', '.']
    PRED 0: Es ist nicht der Fall , die in der Lage in der Lage sind .
    PRED SCORE: -1.3287
    
    
    SENT 0: ['Tymoshenko', 'claims', 'the', 'verdict', 'is', 'a', 'political', 'revenge', 'of', 'the', 'regime;', 'in', 'the', 'West', ',', 'the', 'trial', 'has', 'also', 'evoked', 'suspicion', 'of', 'being', 'biased', '.']
    PRED 0: Um in der Lage ist auch eine Lösung Rolle .
    PRED SCORE: -1.3975
    
    
    SENT 0: ['The', 'proposal', 'to', 'remove', 'Article', '365', 'from', 'the', 'Code', 'of', 'Criminal', 'Procedure', ',', 'upon', 'which', 'the', 'former', 'Prime', 'Minister', 'was', 'sentenced', ',', 'was', 'supported', 'by', '147', 'members', 'of', 'parliament', '.']
    PRED 0: Der Vorschlag , die in der Lage , die in der Lage , die in der Lage ist , war er von der Fall <unk> wurde .
    PRED SCORE: -1.6062
    
    
    SENT 0: ['Its', 'ratification', 'would', 'require', '226', 'votes', '.']
    PRED 0: Es wäre noch einmal noch einmal <unk> .
    PRED SCORE: -1.8001
    
    
    SENT 0: ['Libya', '&apos;s', 'Victory']
    PRED 0: In der Nähe des Hotels befindet sich in der Nähe des Hotels in der Lage .
    PRED SCORE: -1.7097
    
    
    SENT 0: ['The', 'story', 'of', 'Libya', '&apos;s', 'liberation', ',', 'or', 'rebellion', ',', 'already', 'has', 'its', 'defeated', '.']
    PRED 0: In der Nähe des Hotels in der Lage ist in der Lage .
    PRED SCORE: -1.7885