File size: 4,782 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

# Translation

This example is for training for the [WMT'14 English to German news translation task](https://www.statmt.org/wmt14/translation-task.html). It will use on the fly tokenization with [sentencepiece](https://github.com/google/sentencepiece) and [sacrebleu](https://github.com/mjpost/sacrebleu) for evaluation.


## Step 0: Download the data and prepare the subwords model

Preliminary steps are defined in the [`examples/scripts/prepare_wmt_data.sh`](https://github.com/OpenNMT/OpenNMT-py/tree/master/examples/scripts/prepare_wmt_data.sh). The following command will download the necessary datasets, and prepare a sentencepiece model:
```bash
chmod u+x prepare_wmt_data.sh
./prepare_wmt_data.sh
```

Note: you should have installed [sentencepiece](https://github.com/google/sentencepiece) binaries before running this script.

## Step 1. Build the vocabulary.

We need to setup the desired configuration with 1. the data 2. the tokenization options:

```yaml
# wmt14_en_de.yaml
save_data: data/wmt/run/example
## Where the vocab(s) will be written
src_vocab: data/wmt/run/example.vocab.src
tgt_vocab: data/wmt/run/example.vocab.tgt

# Corpus opts:
data:
    commoncrawl:
        path_src: data/wmt/commoncrawl.de-en.en
        path_tgt: data/wmt/commoncrawl.de-en.de
        transforms: [sentencepiece, filtertoolong]
        weight: 23
    europarl:
        path_src: data/wmt/europarl-v7.de-en.en
        path_tgt: data/wmt/europarl-v7.de-en.de
        transforms: [sentencepiece, filtertoolong]
        weight: 19
    news_commentary:
        path_src: data/wmt/news-commentary-v11.de-en.en
        path_tgt: data/wmt/news-commentary-v11.de-en.de
        transforms: [sentencepiece, filtertoolong]
        weight: 3
    valid:
        path_src: data/wmt/valid.en
        path_tgt: data/wmt/valid.de
        transforms: [sentencepiece]

### Transform related opts:
#### Subword
src_subword_model: data/wmt/wmtende.model
tgt_subword_model: data/wmt/wmtende.model
src_subword_nbest: 1
src_subword_alpha: 0.0
tgt_subword_nbest: 1
tgt_subword_alpha: 0.0
#### Filter
src_seq_length: 150
tgt_seq_length: 150

# silently ignore empty lines in the data
skip_empty_level: silent

```

Then we can execute the vocabulary building script. Let's set `-n_sample` to `-1` to compute the vocabulary over the whole corpora:

```bash
onmt_build_vocab -config wmt14_en_de.yaml -n_sample -1
```

## Step 2: Train the model

We need to add the following parameters to the YAML configuration:

```yaml
...

# General opts
save_model: data/wmt/run/model
keep_checkpoint: 50
save_checkpoint_steps: 5000
average_decay: 0.0005
seed: 1234
report_every: 100
train_steps: 100000
valid_steps: 5000

# Batching
queue_size: 10000
bucket_size: 32768
world_size: 2
gpu_ranks: [0, 1]
batch_type: "tokens"
batch_size: 4096
valid_batch_size: 16
batch_size_multiple: 1
max_generator_batches: 0
accum_count: [3]
accum_steps: [0]

# Optimization
model_dtype: "fp32"
optim: "adam"
learning_rate: 2
warmup_steps: 8000
decay_method: "noam"
adam_beta2: 0.998
max_grad_norm: 0
label_smoothing: 0.1
param_init: 0
param_init_glorot: true
normalization: "tokens"

# Model
encoder_type: transformer
decoder_type: transformer
enc_layers: 6
dec_layers: 6
heads: 8
rnn_size: 512
word_vec_size: 512
transformer_ff: 2048
dropout_steps: [0]
dropout: [0.1]
attention_dropout: [0.1]
share_decoder_embeddings: true
share_embeddings: true
```

## Step 3: Translate and evaluate

We need to tokenize the testset with the same sentencepiece model as used in training:

```bash
spm_encode --model=data/wmt/wmtende.model \
    < data/wmt/test.en \
    > data/wmt/test.en.sp
spm_encode --model=data/wmt/wmtende.model \
    < data/wmt/test.de \
    > data/wmt/test.de.sp
```

We can translate the testset with the following command:

```bash
for checkpoint in data/wmt/run/model_step*.pt; do
    echo "# Translating with checkpoint $checkpoint"
    base=$(basename $checkpoint)
    onmt_translate \
        -gpu 0 \
        -batch_size 16384 -batch_type tokens \
        -beam_size 5 \
        -model $checkpoint \
        -src data/wmt/test.en.sp \
        -tgt data/wmt/test.de.sp \
        -output data/wmt/test.de.hyp_${base%.*}.sp
done
```

Prior to evaluation, we need to detokenize the hypothesis:

```bash
for checkpoint in data/wmt/run/model_step*.pt; do
    base=$(basename $checkpoint)
    spm_decode \
        -model=data/wmt/wmtende.model \
        -input_format=piece \
        < data/wmt/test.de.hyp_${base%.*}.sp \
        > data/wmt/test.de.hyp_${base%.*}
done
```


Finally, we can compute detokenized BLEU with `sacrebleu`:

```bash
for checkpoint in data/wmt/run/model_step*.pt; do
    echo "$checkpoint"
    base=$(basename $checkpoint)
    sacrebleu data/wmt/test.de < data/wmt/test.de.hyp_${base%.*}
done
```