File size: 23,720 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
"""
Implementation of "Attention is All You Need" and of
subsequent transformer based architectures
"""

import torch
import torch.nn as nn

from onmt.decoders.decoder import DecoderBase
from onmt.modules import MultiHeadedAttention, AverageAttention
from onmt.modules.position_ffn import PositionwiseFeedForward
from onmt.modules.position_ffn import ActivationFunction
from onmt.utils.misc import sequence_mask


class TransformerDecoderLayerBase(nn.Module):
    def __init__(
        self,
        d_model,
        heads,
        d_ff,
        dropout,
        attention_dropout,
        self_attn_type="scaled-dot",
        max_relative_positions=0,
        aan_useffn=False,
        full_context_alignment=False,
        alignment_heads=0,
        pos_ffn_activation_fn=ActivationFunction.relu,
    ):
        """
        Args:
            d_model (int): the dimension of keys/values/queries in
                :class:`MultiHeadedAttention`, also the input size of
                the first-layer of the :class:`PositionwiseFeedForward`.
            heads (int): the number of heads for MultiHeadedAttention.
            d_ff (int): the second-layer of the
                :class:`PositionwiseFeedForward`.
            dropout (float): dropout in residual, self-attn(dot) and
                feed-forward
            attention_dropout (float): dropout in context_attn  (and
                self-attn(avg))
            self_attn_type (string): type of self-attention scaled-dot,
                average
            max_relative_positions (int):
                Max distance between inputs in relative positions
                representations
            aan_useffn (bool): Turn on the FFN layer in the AAN decoder
            full_context_alignment (bool):
                whether enable an extra full context decoder forward for
                alignment
            alignment_heads (int):
                N. of cross attention heads to use for alignment guiding
            pos_ffn_activation_fn (ActivationFunction):
                activation function choice for PositionwiseFeedForward layer

        """
        super(TransformerDecoderLayerBase, self).__init__()

        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(
                heads,
                d_model,
                dropout=attention_dropout,
                max_relative_positions=max_relative_positions,
            )
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(
                d_model, dropout=attention_dropout, aan_useffn=aan_useffn
            )

        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout,
                                                    pos_ffn_activation_fn
                                                    )
        self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
        self.drop = nn.Dropout(dropout)
        self.full_context_alignment = full_context_alignment
        self.alignment_heads = alignment_heads

    def forward(self, *args, **kwargs):
        """Extend `_forward` for (possibly) multiple decoder pass:
        Always a default (future masked) decoder forward pass,
        Possibly a second future aware decoder pass for joint learn
        full context alignement, :cite:`garg2019jointly`.

        Args:
            * All arguments of _forward.
            with_align (bool): whether return alignment attention.

        Returns:
            (FloatTensor, FloatTensor, FloatTensor or None):

            * output ``(batch_size, T, model_dim)``
            * top_attn ``(batch_size, T, src_len)``
            * attn_align ``(batch_size, T, src_len)`` or None
        """
        with_align = kwargs.pop("with_align", False)
        output, attns = self._forward(*args, **kwargs)
        top_attn = attns[:, 0, :, :].contiguous()
        attn_align = None
        if with_align:
            if self.full_context_alignment:
                # return _, (B, Q_len, K_len)
                _, attns = self._forward(*args, **kwargs, future=True)

            if self.alignment_heads > 0:
                attns = attns[:, : self.alignment_heads, :, :].contiguous()
            # layer average attention across heads, get ``(B, Q, K)``
            # Case 1: no full_context, no align heads -> layer avg baseline
            # Case 2: no full_context, 1 align heads -> guided align
            # Case 3: full_context, 1 align heads -> full cte guided align
            attn_align = attns.mean(dim=1)
        return output, top_attn, attn_align

    def update_dropout(self, dropout, attention_dropout):
        self.self_attn.update_dropout(attention_dropout)
        self.feed_forward.update_dropout(dropout)
        self.drop.p = dropout

    def _forward(self, *args, **kwargs):
        raise NotImplementedError

    def _compute_dec_mask(self, tgt_pad_mask, future):
        tgt_len = tgt_pad_mask.size(-1)
        if not future:  # apply future_mask, result mask in (B, T, T)
            future_mask = torch.ones(
                [tgt_len, tgt_len],
                device=tgt_pad_mask.device,
                dtype=torch.uint8,
            )
            future_mask = future_mask.triu_(1).view(1, tgt_len, tgt_len)
            # BoolTensor was introduced in pytorch 1.2
            try:
                future_mask = future_mask.bool()
            except AttributeError:
                pass
            dec_mask = torch.gt(tgt_pad_mask + future_mask, 0)
        else:  # only mask padding, result mask in (B, 1, T)
            dec_mask = tgt_pad_mask
        return dec_mask

    def _forward_self_attn(self, inputs_norm, dec_mask, layer_cache, step):
        if isinstance(self.self_attn, MultiHeadedAttention):
            return self.self_attn(
                inputs_norm,
                inputs_norm,
                inputs_norm,
                mask=dec_mask,
                layer_cache=layer_cache,
                attn_type="self",
            )
        elif isinstance(self.self_attn, AverageAttention):
            return self.self_attn(
                inputs_norm, mask=dec_mask, layer_cache=layer_cache, step=step
            )
        else:
            raise ValueError(
                f"self attention {type(self.self_attn)} not supported"
            )


class TransformerDecoderLayer(TransformerDecoderLayerBase):
    """Transformer Decoder layer block in Pre-Norm style.
    Pre-Norm style is an improvement w.r.t. Original paper's Post-Norm style,
    providing better converge speed and performance. This is also the actual
    implementation in tensor2tensor and also avalable in fairseq.
    See https://tunz.kr/post/4 and :cite:`DeeperTransformer`.

    .. mermaid::

        graph LR
        %% "*SubLayer" can be self-attn, src-attn or feed forward block
            A(input) --> B[Norm]
            B --> C["*SubLayer"]
            C --> D[Drop]
            D --> E((+))
            A --> E
            E --> F(out)

    """

    def __init__(
        self,
        d_model,
        heads,
        d_ff,
        dropout,
        attention_dropout,
        self_attn_type="scaled-dot",
        max_relative_positions=0,
        aan_useffn=False,
        full_context_alignment=False,
        alignment_heads=0,
        pos_ffn_activation_fn=ActivationFunction.relu,
    ):
        """
        Args:
            See TransformerDecoderLayerBase
        """
        super(TransformerDecoderLayer, self).__init__(
            d_model,
            heads,
            d_ff,
            dropout,
            attention_dropout,
            self_attn_type,
            max_relative_positions,
            aan_useffn,
            full_context_alignment,
            alignment_heads,
            pos_ffn_activation_fn=pos_ffn_activation_fn,
        )
        self.context_attn = MultiHeadedAttention(
            heads, d_model, dropout=attention_dropout
        )
        self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-6)

    def update_dropout(self, dropout, attention_dropout):
        super(TransformerDecoderLayer, self).update_dropout(
            dropout, attention_dropout
        )
        self.context_attn.update_dropout(attention_dropout)

    def _forward(
        self,
        inputs,
        memory_bank,
        src_pad_mask,
        tgt_pad_mask,
        layer_cache=None,
        step=None,
        future=False,
    ):
        """A naive forward pass for transformer decoder.

        # T: could be 1 in the case of stepwise decoding or tgt_len

        Args:
            inputs (FloatTensor): ``(batch_size, T, model_dim)``
            memory_bank (FloatTensor): ``(batch_size, src_len, model_dim)``
            src_pad_mask (bool): ``(batch_size, 1, src_len)``
            tgt_pad_mask (bool): ``(batch_size, 1, T)``
            layer_cache (dict or None): cached layer info when stepwise decode
            step (int or None): stepwise decoding counter
            future (bool): If set True, do not apply future_mask.

        Returns:
            (FloatTensor, FloatTensor):

            * output ``(batch_size, T, model_dim)``
            * attns ``(batch_size, head, T, src_len)``

        """
        dec_mask = None

        if inputs.size(1) > 1:
            # masking is necessary when sequence length is greater than one
            dec_mask = self._compute_dec_mask(tgt_pad_mask, future)

        inputs_norm = self.layer_norm_1(inputs)

        query, _ = self._forward_self_attn(
            inputs_norm, dec_mask, layer_cache, step
        )

        query = self.drop(query) + inputs

        query_norm = self.layer_norm_2(query)
        mid, attns = self.context_attn(
            memory_bank,
            memory_bank,
            query_norm,
            mask=src_pad_mask,
            layer_cache=layer_cache,
            attn_type="context",
        )
        output = self.feed_forward(self.drop(mid) + query)

        return output, attns


class TransformerDecoderBase(DecoderBase):
    def __init__(self, d_model, copy_attn, embeddings, alignment_layer):
        super(TransformerDecoderBase, self).__init__()

        self.embeddings = embeddings

        # Decoder State
        self.state = {}

        # previously, there was a GlobalAttention module here for copy
        # attention. But it was never actually used -- the "copy" attention
        # just reuses the context attention.
        self._copy = copy_attn
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)

        self.alignment_layer = alignment_layer

    @classmethod
    def from_opt(cls, opt, embeddings):
        """Alternate constructor."""
        return cls(
            opt.dec_layers,
            opt.dec_rnn_size,
            opt.heads,
            opt.transformer_ff,
            opt.copy_attn,
            opt.self_attn_type,
            opt.dropout[0] if type(opt.dropout) is list else opt.dropout,
            opt.attention_dropout[0]
            if type(opt.attention_dropout) is list
            else opt.attention_dropout,
            embeddings,
            opt.max_relative_positions,
            opt.aan_useffn,
            opt.full_context_alignment,
            opt.alignment_layer,
            alignment_heads=opt.alignment_heads,
            pos_ffn_activation_fn=opt.pos_ffn_activation_fn,
        )

    def init_state(self, src, memory_bank, enc_hidden):
        """Initialize decoder state."""
        self.state["src"] = src
        self.state["cache"] = None

    def map_state(self, fn):
        def _recursive_map(struct, batch_dim=0):
            for k, v in struct.items():
                if v is not None:
                    if isinstance(v, dict):
                        _recursive_map(v)
                    else:
                        struct[k] = fn(v, batch_dim)

        if self.state["src"] is not None:
            self.state["src"] = fn(self.state["src"], 1)
        if self.state["cache"] is not None:
            _recursive_map(self.state["cache"])

    def detach_state(self):
        raise NotImplementedError

    def forward(self, *args, **kwargs):
        raise NotImplementedError

    def update_dropout(self, dropout, attention_dropout):
        self.embeddings.update_dropout(dropout)
        for layer in self.transformer_layers:
            layer.update_dropout(dropout, attention_dropout)


class TransformerDecoder(TransformerDecoderBase):
    """The Transformer decoder from "Attention is All You Need".
    :cite:`DBLP:journals/corr/VaswaniSPUJGKP17`

    .. mermaid::

       graph BT
          A[input]
          B[multi-head self-attn]
          BB[multi-head src-attn]
          C[feed forward]
          O[output]
          A --> B
          B --> BB
          BB --> C
          C --> O


    Args:
        num_layers (int): number of decoder layers.
        d_model (int): size of the model
        heads (int): number of heads
        d_ff (int): size of the inner FF layer
        copy_attn (bool): if using a separate copy attention
        self_attn_type (str): type of self-attention scaled-dot, average
        dropout (float): dropout in residual, self-attn(dot) and feed-forward
        attention_dropout (float): dropout in context_attn (and self-attn(avg))
        embeddings (onmt.modules.Embeddings):
            embeddings to use, should have positional encodings
        max_relative_positions (int):
            Max distance between inputs in relative positions representations
        aan_useffn (bool): Turn on the FFN layer in the AAN decoder
        full_context_alignment (bool):
            whether enable an extra full context decoder forward for alignment
        alignment_layer (int): N° Layer to supervise with for alignment guiding
        alignment_heads (int):
            N. of cross attention heads to use for alignment guiding
    """

    def __init__(
        self,
        num_layers,
        d_model,
        heads,
        d_ff,
        copy_attn,
        self_attn_type,
        dropout,
        attention_dropout,
        embeddings,
        max_relative_positions,
        aan_useffn,
        full_context_alignment,
        alignment_layer,
        alignment_heads,
        pos_ffn_activation_fn=ActivationFunction.relu,
    ):
        super(TransformerDecoder, self).__init__(
            d_model, copy_attn, embeddings, alignment_layer
        )

        self.transformer_layers = nn.ModuleList(
            [
                TransformerDecoderLayer(
                    d_model,
                    heads,
                    d_ff,
                    dropout,
                    attention_dropout,
                    self_attn_type=self_attn_type,
                    max_relative_positions=max_relative_positions,
                    aan_useffn=aan_useffn,
                    full_context_alignment=full_context_alignment,
                    alignment_heads=alignment_heads,
                    pos_ffn_activation_fn=pos_ffn_activation_fn,
                )
                for i in range(num_layers)
            ]
        )

    def detach_state(self):
        self.state["src"] = self.state["src"].detach()

    def forward(self, tgt, memory_bank=None, step=None, **kwargs):
        """Decode, possibly stepwise."""
        if memory_bank is None:
            memory_bank = self.embeddings(tgt)
        if step == 0:
            self._init_cache(memory_bank)

        tgt_words = tgt[:, :, 0].transpose(0, 1)

        emb = self.embeddings(tgt, step=step)
        assert emb.dim() == 3  # len x batch x embedding_dim

        output = emb.transpose(0, 1).contiguous()
        src_memory_bank = memory_bank.transpose(0, 1).contiguous()

        pad_idx = self.embeddings.word_padding_idx
        src_lens = kwargs["memory_lengths"]
        src_max_len = self.state["src"].shape[0]
        src_pad_mask = ~sequence_mask(src_lens, src_max_len).unsqueeze(1)
        tgt_pad_mask = tgt_words.data.eq(pad_idx).unsqueeze(1)  # [B, 1, T_tgt]

        with_align = kwargs.pop("with_align", False)
        attn_aligns = []

        for i, layer in enumerate(self.transformer_layers):
            layer_cache = (
                self.state["cache"]["layer_{}".format(i)]
                if step is not None
                else None
            )
            output, attn, attn_align = layer(
                output,
                src_memory_bank,
                src_pad_mask,
                tgt_pad_mask,
                layer_cache=layer_cache,
                step=step,
                with_align=with_align,
            )
            if attn_align is not None:
                attn_aligns.append(attn_align)

        output = self.layer_norm(output)
        dec_outs = output.transpose(0, 1).contiguous()
        attn = attn.transpose(0, 1).contiguous()

        attns = {"std": attn}
        if self._copy:
            attns["copy"] = attn
        if with_align:
            attns["align"] = attn_aligns[self.alignment_layer]  # `(B, Q, K)`
            # attns["align"] = torch.stack(attn_aligns, 0).mean(0)  # All avg

        # TODO change the way attns is returned dict => list or tuple (onnx)
        return dec_outs, attns

    def _init_cache(self, memory_bank):
        self.state["cache"] = {}
        batch_size = memory_bank.size(1)
        depth = memory_bank.size(-1)

        for i, layer in enumerate(self.transformer_layers):
            layer_cache = {"memory_keys": None, "memory_values": None}
            if isinstance(layer.self_attn, AverageAttention):
                layer_cache["prev_g"] = torch.zeros(
                    (batch_size, 1, depth), device=memory_bank.device
                )
            else:
                layer_cache["self_keys"] = None
                layer_cache["self_values"] = None
            self.state["cache"]["layer_{}".format(i)] = layer_cache


class TransformerLMDecoderLayer(TransformerDecoderLayerBase):
    """Transformer Decoder only layer block in GPT style.

    .. mermaid::

        graph LR
        %% "*SubLayer" can be self-attn, src-attn or feed forward block
            A(input) --> B[Norm]
            B --> C["*SubLayer"]
            C --> D[Drop]
            D --> E((+))
            A --> E
            E --> F(out)


    Args:
        See TransformerDecoderLayerBase
    """

    def _forward(
        self, inputs, tgt_pad_mask, layer_cache=None, step=None, future=False
    ):
        """A naive forward pass for transformer decoder.

        # T: could be 1 in the case of stepwise decoding or tgt_len

        Args:
            inputs (FloatTensor): ``(batch_size, T, model_dim)``
            tgt_pad_mask (bool): ``(batch_size, 1, T)``
            layer_cache (dict or None): cached layer info when stepwise decode
            step (int or None): stepwise decoding counter
            future (bool): If set True, do not apply future_mask.

        Returns:
            (FloatTensor, FloatTensor):

            * output ``(batch_size, T, model_dim)``
            * attns ``(batch_size, head, T, T)``

        """
        dec_mask = None

        if inputs.size(1) > 1:
            # masking is necessary when sequence length is greater than one
            dec_mask = self._compute_dec_mask(tgt_pad_mask, future)

        inputs_norm = self.layer_norm_1(inputs)

        query, attns = self._forward_self_attn(
            inputs_norm, dec_mask, layer_cache, step
        )

        output = self.drop(query) + inputs

        output_feedforward = self.feed_forward(output)

        return output_feedforward, attns


class TransformerLMDecoder(TransformerDecoderBase):
    """The Transformer decoder from GPT-2

    .. mermaid::

       graph BT
          A[input]
          B[multi-head self-attn]
          C[feed forward]
          O[output]
          A --> B
          B --> C
          C --> O


    Args:
        num_layers (int): number of decoder layers.
        d_model (int): size of the model
        heads (int): number of heads
        d_ff (int): size of the inner FF layer
        copy_attn (bool): if using a separate copy attention
        self_attn_type (str): type of self-attention scaled-dot, average
        dropout (float): dropout in residual, self-attn(dot) and feed-forward
        attention_dropout (float): dropout in context_attn (and self-attn(avg))
        embeddings (onmt.modules.Embeddings):
            embeddings to use, should have positional encodings
        max_relative_positions (int):
            Max distance between inputs in relative positions representations
        aan_useffn (bool): Turn on the FFN layer in the AAN decoder
    """

    def __init__(
        self,
        num_layers,
        d_model,
        heads,
        d_ff,
        copy_attn,
        self_attn_type,
        dropout,
        attention_dropout,
        embeddings,
        max_relative_positions,
        aan_useffn,
        full_context_alignment=None,
        alignment_layer=None,
        alignment_heads=None,
        pos_ffn_activation_fn=ActivationFunction.relu,
    ):
        super(TransformerLMDecoder, self).__init__(
            d_model, copy_attn, embeddings, None
        )
        self.transformer_layers = nn.ModuleList(
            [
                TransformerLMDecoderLayer(
                    d_model,
                    heads,
                    d_ff,
                    dropout,
                    attention_dropout,
                    self_attn_type=self_attn_type,
                    max_relative_positions=max_relative_positions,
                    aan_useffn=aan_useffn,
                    full_context_alignment=None,
                    alignment_heads=None,
                    pos_ffn_activation_fn=pos_ffn_activation_fn,
                )
                for i in range(num_layers)
            ]
        )

    def init_state(self, src=None, memory_bank=None, enc_hidden=None):
        super(TransformerLMDecoder, self).init_state(None, None, None)

    def detach_state(self):
        pass

    def forward(self, tgt, memory_bank=None, step=None, **kwargs):
        """Decode, possibly stepwise."""
        if step == 0:
            self._init_cache()

        tgt_words = tgt[:, :, 0].transpose(0, 1)

        emb = self.embeddings(tgt, step=step)
        assert emb.dim() == 3  # len x batch x embedding_dim

        output = emb.transpose(0, 1).contiguous()

        pad_idx = self.embeddings.word_padding_idx
        tgt_pad_mask = tgt_words.data.eq(pad_idx).unsqueeze(1)  # [B, 1, T_tgt]

        with_align = kwargs.pop("with_align", False)
        assert not with_align, "TransformerLMDecoder does not support align"

        for i, layer in enumerate(self.transformer_layers):
            layer_cache = (
                self.state["cache"]["layer_{}".format(i)]
                if step is not None
                else None
            )
            output, attn, _ = layer(
                output,
                tgt_pad_mask,
                layer_cache=layer_cache,
                step=step,
                with_align=with_align,
            )

        output = self.layer_norm(output)
        dec_outs = output.transpose(0, 1).contiguous()
        attn = attn.transpose(0, 1).contiguous()

        attns = {"std": attn}
        if self._copy:
            attns["copy"] = attn

        # TODO change the way attns is returned dict => list or tuple (onnx)
        return dec_outs, attns

    def _init_cache(self, memory_bank=None):
        self.state["cache"] = {}

        for i, layer in enumerate(self.transformer_layers):
            layer_cache = {"self_keys": None, "self_values": None}
            if isinstance(layer.self_attn, AverageAttention):
                raise NotImplementedError
            self.state["cache"]["layer_{}".format(i)] = layer_cache