File size: 18,299 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
"""Module that contain shard utils for dynamic data."""
import os
from onmt.utils.logging import logger
from onmt.constants import CorpusName
from onmt.transforms import TransformPipe
from onmt.inputters.dataset_base import _dynamic_dict
from torchtext.data import Dataset as TorchtextDataset, \
Example as TorchtextExample
from collections import Counter, defaultdict
from contextlib import contextmanager
import multiprocessing as mp
@contextmanager
def exfile_open(filename, *args, **kwargs):
"""Extended file opener enables open(filename=None).
This context manager enables open(filename=None) as well as regular file.
filename None will produce endlessly None for each iterate,
while filename with valid path will produce lines as usual.
Args:
filename (str|None): a valid file path or None;
*args: args relate to open file using codecs;
**kwargs: kwargs relate to open file using codecs.
Yields:
`None` repeatly if filename==None,
else yield from file specified in `filename`.
"""
if filename is None:
from itertools import repeat
_file = repeat(None)
else:
import codecs
_file = codecs.open(filename, *args, **kwargs)
yield _file
if filename is not None and _file:
_file.close()
class DatasetAdapter(object):
"""Adapte a buckets of tuples into examples of a torchtext Dataset."""
valid_field_name = (
'src', 'tgt', 'indices', 'src_map', 'src_ex_vocab', 'alignment',
'align')
def __init__(self, fields, is_train):
self.fields_dict = self._valid_fields(fields)
self.is_train = is_train
@classmethod
def _valid_fields(cls, fields):
"""Return valid fields in dict format."""
return {
f_k: f_v for f_k, f_v in fields.items()
if f_k in cls.valid_field_name
}
@staticmethod
def _process(item, is_train):
"""Return valid transformed example from `item`."""
example, transform, cid = item
# this is a hack: appears quicker to apply it here
# than in the ParallelCorpusIterator
maybe_example = transform.apply(
example, is_train=is_train, corpus_name=cid)
if maybe_example is None:
return None
maybe_example['src'] = {"src": ' '.join(maybe_example['src'])}
# Make features part of src as in TextMultiField
# {'src': {'src': ..., 'feat1': ...., 'feat2': ....}}
if 'src_feats' in maybe_example:
for feat_name, feat_value in maybe_example['src_feats'].items():
maybe_example['src'][feat_name] = ' '.join(feat_value)
del maybe_example["src_feats"]
maybe_example['tgt'] = {"tgt": ' '.join(maybe_example['tgt'])}
if 'align' in maybe_example:
maybe_example['align'] = ' '.join(maybe_example['align'])
return maybe_example
def _maybe_add_dynamic_dict(self, example, fields):
"""maybe update `example` with dynamic_dict related fields."""
if 'src_map' in fields and 'alignment' in fields:
example = _dynamic_dict(
example,
fields['src'].base_field,
fields['tgt'].base_field)
return example
def _to_examples(self, bucket, is_train=False):
examples = []
for item in bucket:
maybe_example = self._process(item, is_train=is_train)
if maybe_example is not None:
example = self._maybe_add_dynamic_dict(
maybe_example, self.fields_dict)
ex_fields = {k: [(k, v)] for k, v in self.fields_dict.items()
if k in example}
ex = TorchtextExample.fromdict(example, ex_fields)
examples.append(ex)
return examples
def __call__(self, bucket):
examples = self._to_examples(bucket, is_train=self.is_train)
dataset = TorchtextDataset(examples, self.fields_dict)
return dataset
class ParallelCorpus(object):
"""A parallel corpus file pair that can be loaded to iterate."""
def __init__(self, name, src, tgt, align=None, src_feats=None):
"""Initialize src & tgt side file path."""
self.id = name
self.src = src
self.tgt = tgt
self.align = align
self.src_feats = src_feats
def load(self, offset=0, stride=1):
"""
Load file and iterate by lines.
`offset` and `stride` allow to iterate only on every
`stride` example, starting from `offset`.
"""
if self.src_feats:
features_names = []
features_files = []
for feat_name, feat_path in self.src_feats.items():
features_names.append(feat_name)
features_files.append(open(feat_path, mode='rb'))
else:
features_files = []
with exfile_open(self.src, mode='rb') as fs,\
exfile_open(self.tgt, mode='rb') as ft,\
exfile_open(self.align, mode='rb') as fa:
for i, (sline, tline, align, *features) in \
enumerate(zip(fs, ft, fa, *features_files)):
if (i % stride) == offset:
sline = sline.decode('utf-8')
tline = tline.decode('utf-8')
# 'src_original' and 'tgt_original' store the
# original line before tokenization. These
# fields are used later on in the feature
# transforms.
example = {
'src': sline,
'tgt': tline,
'src_original': sline,
'tgt_original': tline
}
if align is not None:
example['align'] = align.decode('utf-8')
if features:
example["src_feats"] = dict()
for j, feat in enumerate(features):
example["src_feats"][features_names[j]] = \
feat.decode("utf-8")
yield example
for f in features_files:
f.close()
def __str__(self):
cls_name = type(self).__name__
return '{}({}, {}, align={}, src_feats={})'.format(
cls_name, self.src, self.tgt, self.align, self.src_feats)
def get_corpora(opts, is_train=False):
corpora_dict = {}
if is_train:
for corpus_id, corpus_dict in opts.data.items():
if corpus_id != CorpusName.VALID:
corpora_dict[corpus_id] = ParallelCorpus(
corpus_id,
corpus_dict["path_src"],
corpus_dict["path_tgt"],
corpus_dict["path_align"],
corpus_dict["src_feats"])
else:
if CorpusName.VALID in opts.data.keys():
corpora_dict[CorpusName.VALID] = ParallelCorpus(
CorpusName.VALID,
opts.data[CorpusName.VALID]["path_src"],
opts.data[CorpusName.VALID]["path_tgt"],
opts.data[CorpusName.VALID]["path_align"],
opts.data[CorpusName.VALID]["src_feats"])
else:
return None
return corpora_dict
class ParallelCorpusIterator(object):
"""An iterator dedicate for ParallelCorpus.
Args:
corpus (ParallelCorpus): corpus to iterate;
transform (TransformPipe): transforms to be applied to corpus;
skip_empty_level (str): security level when encouter empty line;
stride (int): iterate corpus with this line stride;
offset (int): iterate corpus with this line offset.
"""
def __init__(self, corpus, transform,
skip_empty_level='warning', stride=1, offset=0):
self.cid = corpus.id
self.corpus = corpus
self.transform = transform
if skip_empty_level not in ['silent', 'warning', 'error']:
raise ValueError(
f"Invalid argument skip_empty_level={skip_empty_level}")
self.skip_empty_level = skip_empty_level
self.stride = stride
self.offset = offset
def _tokenize(self, stream):
for example in stream:
example['src'] = example['src'].strip('\n').split()
example['tgt'] = example['tgt'].strip('\n').split()
example['src_original'] = \
example['src_original'].strip("\n").split()
example['tgt_original'] = \
example['tgt_original'].strip("\n").split()
if 'align' in example:
example['align'] = example['align'].strip('\n').split()
if 'src_feats' in example:
for k in example['src_feats'].keys():
example['src_feats'][k] = \
example['src_feats'][k].strip('\n').split()
yield example
def _transform(self, stream):
for example in stream:
# NOTE: moved to DatasetAdapter._process method in iterator.py
# item = self.transform.apply(
# example, is_train=self.infinitely, corpus_name=self.cid)
item = (example, self.transform, self.cid)
if item is not None:
yield item
report_msg = self.transform.stats()
if report_msg != '':
logger.info(
"* Transform statistics for {}({:.2f}%):\n{}\n".format(
self.cid, 100/self.stride, report_msg
)
)
def _add_index(self, stream):
for i, item in enumerate(stream):
example = item[0]
line_number = i * self.stride + self.offset
example['indices'] = line_number
if (len(example['src']) == 0 or len(example['tgt']) == 0 or
('align' in example and example['align'] == 0)):
# empty example: skip
empty_msg = f"Empty line exists in {self.cid}#{line_number}."
if self.skip_empty_level == 'error':
raise IOError(empty_msg)
elif self.skip_empty_level == 'warning':
logger.warning(empty_msg)
continue
yield item
def __iter__(self):
corpus_stream = self.corpus.load(
stride=self.stride, offset=self.offset
)
tokenized_corpus = self._tokenize(corpus_stream)
transformed_corpus = self._transform(tokenized_corpus)
indexed_corpus = self._add_index(transformed_corpus)
yield from indexed_corpus
def build_corpora_iters(corpora, transforms, corpora_info,
skip_empty_level='warning', stride=1, offset=0):
"""Return `ParallelCorpusIterator` for all corpora defined in opts."""
corpora_iters = dict()
for c_id, corpus in corpora.items():
transform_names = corpora_info[c_id].get('transforms', [])
corpus_transform = [
transforms[name] for name in transform_names if name in transforms
]
transform_pipe = TransformPipe.build_from(corpus_transform)
logger.info(f"{c_id}'s transforms: {str(transform_pipe)}")
corpus_iter = ParallelCorpusIterator(
corpus, transform_pipe,
skip_empty_level=skip_empty_level, stride=stride, offset=offset)
corpora_iters[c_id] = corpus_iter
return corpora_iters
def write_files_from_queues(sample_path, queues):
"""
Standalone process that reads data from
queues in order and write to sample files.
"""
os.makedirs(sample_path, exist_ok=True)
for c_name in queues.keys():
dest_base = os.path.join(
sample_path, "{}.{}".format(c_name, CorpusName.SAMPLE))
with open(dest_base + ".src", 'w', encoding="utf-8") as f_src,\
open(dest_base + ".tgt", 'w', encoding="utf-8") as f_tgt:
while True:
_next = False
for q in queues[c_name]:
item = q.get()
if item == "blank":
continue
if item == "break":
_next = True
break
_, src_line, tgt_line = item
f_src.write(src_line + '\n')
f_tgt.write(tgt_line + '\n')
if _next:
break
# Just for debugging purposes
# It appends features to subwords when dumping to file
def append_features_to_example(example, features):
ex_toks = example.split(' ')
feat_toks = features.split(' ')
toks = [f"{subword}│{feat}" for subword, feat in
zip(ex_toks, feat_toks)]
return " ".join(toks)
def build_sub_vocab(corpora, transforms, opts, n_sample, stride, offset):
"""Build vocab on (strided) subpart of the data."""
sub_counter_src = Counter()
sub_counter_tgt = Counter()
sub_counter_src_feats = defaultdict(Counter)
datasets_iterables = build_corpora_iters(
corpora, transforms, opts.data,
skip_empty_level=opts.skip_empty_level,
stride=stride, offset=offset)
for c_name, c_iter in datasets_iterables.items():
for i, item in enumerate(c_iter):
maybe_example = DatasetAdapter._process(item, is_train=True)
if maybe_example is None:
if opts.dump_samples:
build_sub_vocab.queues[c_name][offset].put("blank")
continue
src_line, tgt_line = (maybe_example['src']['src'],
maybe_example['tgt']['tgt'])
src_line_pretty = src_line
for feat_name, feat_line in maybe_example["src"].items():
if feat_name not in ["src", "src_original"]:
sub_counter_src_feats[feat_name].update(
feat_line.split(' '))
if opts.dump_samples:
src_line_pretty = append_features_to_example(
src_line_pretty, feat_line)
sub_counter_src.update(src_line.split(' '))
sub_counter_tgt.update(tgt_line.split(' '))
if opts.dump_samples:
build_sub_vocab.queues[c_name][offset].put(
(i, src_line_pretty, tgt_line))
if n_sample > 0 and ((i+1) * stride + offset) >= n_sample:
if opts.dump_samples:
build_sub_vocab.queues[c_name][offset].put("break")
break
if opts.dump_samples:
build_sub_vocab.queues[c_name][offset].put("break")
return sub_counter_src, sub_counter_tgt, sub_counter_src_feats
def init_pool(queues):
"""Add the queues as attribute of the pooled function."""
build_sub_vocab.queues = queues
def build_vocab(opts, transforms, n_sample=3):
"""Build vocabulary from data."""
if n_sample == -1:
logger.info(f"n_sample={n_sample}: Build vocab on full datasets.")
elif n_sample > 0:
logger.info(f"Build vocab on {n_sample} transformed examples/corpus.")
else:
raise ValueError(f"n_sample should > 0 or == -1, get {n_sample}.")
if opts.dump_samples:
logger.info("The samples on which the vocab is built will be "
"dumped to disk. It may slow down the process.")
corpora = get_corpora(opts, is_train=True)
counter_src = Counter()
counter_tgt = Counter()
counter_src_feats = defaultdict(Counter)
from functools import partial
queues = {c_name: [mp.Queue(opts.vocab_sample_queue_size)
for i in range(opts.num_threads)]
for c_name in corpora.keys()}
sample_path = os.path.join(
os.path.dirname(opts.save_data), CorpusName.SAMPLE)
if opts.dump_samples:
write_process = mp.Process(
target=write_files_from_queues,
args=(sample_path, queues),
daemon=True)
write_process.start()
with mp.Pool(opts.num_threads, init_pool, [queues]) as p:
func = partial(
build_sub_vocab, corpora, transforms,
opts, n_sample, opts.num_threads)
for sub_counter_src, sub_counter_tgt, sub_counter_src_feats in p.imap(
func, range(0, opts.num_threads)):
counter_src.update(sub_counter_src)
counter_tgt.update(sub_counter_tgt)
counter_src_feats.update(sub_counter_src_feats)
if opts.dump_samples:
write_process.join()
return counter_src, counter_tgt, counter_src_feats
def save_transformed_sample(opts, transforms, n_sample=3):
"""Save transformed data sample as specified in opts."""
if n_sample == -1:
logger.info(f"n_sample={n_sample}: Save full transformed corpus.")
elif n_sample == 0:
logger.info(f"n_sample={n_sample}: no sample will be saved.")
return
elif n_sample > 0:
logger.info(f"Save {n_sample} transformed example/corpus.")
else:
raise ValueError(f"n_sample should >= -1, get {n_sample}.")
corpora = get_corpora(opts, is_train=True)
datasets_iterables = build_corpora_iters(
corpora, transforms, opts.data,
skip_empty_level=opts.skip_empty_level)
sample_path = os.path.join(
os.path.dirname(opts.save_data), CorpusName.SAMPLE)
os.makedirs(sample_path, exist_ok=True)
for c_name, c_iter in datasets_iterables.items():
dest_base = os.path.join(
sample_path, "{}.{}".format(c_name, CorpusName.SAMPLE))
with open(dest_base + ".src", 'w', encoding="utf-8") as f_src,\
open(dest_base + ".tgt", 'w', encoding="utf-8") as f_tgt:
for i, item in enumerate(c_iter):
maybe_example = DatasetAdapter._process(item, is_train=True)
if maybe_example is None:
continue
src_line, tgt_line = (maybe_example['src']['src'],
maybe_example['tgt']['tgt'])
f_src.write(src_line + '\n')
f_tgt.write(tgt_line + '\n')
if n_sample > 0 and i >= n_sample:
break
|