File size: 12,493 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# -*- coding: utf-8 -*-
from functools import partial
from itertools import repeat
import torch
from torchtext.data import Field, RawField
from onmt.constants import DefaultTokens
from onmt.inputters.datareader_base import DataReaderBase
from onmt.utils.misc import split_corpus
class TextDataReader(DataReaderBase):
def read(self, sequences, side, features={}):
"""Read text data from disk.
Args:
sequences (str or Iterable[str]):
path to text file or iterable of the actual text data.
side (str): Prefix used in return dict. Usually
``"src"`` or ``"tgt"``.
features: (Dict[str or Iterable[str]]):
dictionary mapping feature names with the path to feature
file or iterable of the actual feature data.
Yields:
dictionaries whose keys are the names of fields and whose
values are more or less the result of tokenizing with those
fields.
"""
if isinstance(sequences, str):
sequences = DataReaderBase._read_file(sequences)
features_names = []
features_values = []
for feat_name, v in features.items():
features_names.append(feat_name)
if isinstance(v, str):
features_values.append(DataReaderBase._read_file(features))
else:
features_values.append(v)
for i, (seq, *feats) in enumerate(zip(sequences, *features_values)):
ex_dict = {}
if isinstance(seq, bytes):
seq = seq.decode("utf-8")
ex_dict[side] = seq
for j, f in enumerate(feats):
if isinstance(f, bytes):
f = f.decode("utf-8")
ex_dict[features_names[j]] = f
yield {side: ex_dict, "indices": i}
class InferenceDataReader(object):
"""It handles inference data reading from disk in shards.
Args:
src (str): path to the source file
tgt (str or NoneType): path to the target file
src_feats (Dict[str]): paths to the features files
shard_size (int): divides files into smaller files of size shard_size
Returns:
Tuple[List[str], List[str], Dict[List[str]]]
"""
def __init__(self, src, tgt, src_feats={}, shard_size=10000):
self.src = src
self.tgt = tgt
self.src_feats = src_feats
self.shard_size = shard_size
def __iter__(self):
src_shards = split_corpus(self.src, self.shard_size)
tgt_shards = split_corpus(self.tgt, self.shard_size)
if not self.src_feats:
features_shards = [repeat(None)]
else:
features_shards = []
features_names = []
for feat_name, feat_path in self.src_feats.items():
features_shards.append(
split_corpus(feat_path, self.shard_size))
features_names.append(feat_name)
shard_pairs = zip(src_shards, tgt_shards, *features_shards)
for i, shard in enumerate(shard_pairs):
src_shard, tgt_shard, *features_shard = shard
if features_shard[0] is not None:
features_shard_ = dict()
for j, x in enumerate(features_shard):
features_shard_[features_names[j]] = x
else:
features_shard_ = None
yield src_shard, tgt_shard, features_shard_
class InferenceDataIterator(object):
def __init__(self, src, tgt, src_feats, transform):
self.src = src
self.tgt = tgt
self.src_feats = src_feats
self.transform = transform
def _tokenize(self, example):
example['src'] = example['src'].decode("utf-8").strip('\n').split()
example['tgt'] = example['tgt'].decode("utf-8").strip('\n').split() \
if example["tgt"] is not None else None
example['src_original'] = example['src']
example['tgt_original'] = example['tgt']
if 'src_feats' in example:
for k in example['src_feats'].keys():
example['src_feats'][k] = example['src_feats'][k] \
.decode("utf-8").strip('\n').split() \
if example['src_feats'][k] is not None else None
return example
def _transform(self, example, remove_tgt=False):
maybe_example = self.transform.apply(
example, is_train=False, corpus_name="translate")
assert maybe_example is not None, \
"Transformation on example skipped the example. " \
"Please check the transforms."
return maybe_example
def _process(self, example, remove_tgt=False):
example['src'] = {"src": ' '.join(example['src'])}
example['tgt'] = {"tgt": ' '.join(example['tgt'])}
# Make features part of src as in TextMultiField
# {'src': {'src': ..., 'feat1': ...., 'feat2': ....}}
if 'src_feats' in example:
for feat_name, feat_value in example['src_feats'].items():
example['src'][feat_name] = ' '.join(feat_value)
del example["src_feats"]
# Cleanup
if remove_tgt:
del example["tgt"]
del example["tgt_original"]
del example["src_original"]
return example
def __iter__(self):
tgt = self.tgt if self.tgt is not None else repeat(None)
if self.src_feats is not None:
features_names = []
features_values = []
for feat_name, values in self.src_feats.items():
features_names.append(feat_name)
features_values.append(values)
else:
features_values = [repeat(None)]
for i, (src, tgt, *src_feats) in enumerate(zip(
self.src, tgt, *features_values)):
ex = {
"src": src,
"tgt": tgt if tgt is not None else b""
}
if src_feats[0] is not None:
src_feats_ = {}
for j, x in enumerate(src_feats):
src_feats_[features_names[j]] = x
ex["src_feats"] = src_feats_
ex = self._tokenize(ex)
ex = self._transform(ex)
ex = self._process(ex, remove_tgt=self.tgt is None)
ex["indices"] = i
yield ex
def text_sort_key(ex):
"""Sort using the number of tokens in the sequence."""
if hasattr(ex, "tgt"):
return len(ex.src[0]), len(ex.tgt[0])
return len(ex.src[0])
# Legacy function. Currently it only truncates input if truncate is set.
# mix this with partial
def _feature_tokenize(
string, layer=0, tok_delim=None, feat_delim=None, truncate=None):
"""Split apart word features (like POS/NER tags) from the tokens.
Args:
string (str): A string with ``tok_delim`` joining tokens and
features joined by ``feat_delim``. For example,
``"hello|NOUN|'' Earth|NOUN|PLANET"``.
layer (int): Which feature to extract. (Not used if there are no
features, indicated by ``feat_delim is None``). In the
example above, layer 2 is ``'' PLANET``.
truncate (int or NoneType): Restrict sequences to this length of
tokens.
Returns:
List[str] of tokens.
"""
tokens = string.split(tok_delim)
if truncate is not None:
tokens = tokens[:truncate]
if feat_delim is not None:
tokens = [t.split(feat_delim)[layer] for t in tokens]
return tokens
class TextMultiField(RawField):
"""Container for subfields.
Text data might use POS/NER/etc labels in addition to tokens.
This class associates the "base" :class:`Field` with any subfields.
It also handles padding the data and stacking it.
Args:
base_name (str): Name for the base field.
base_field (Field): The token field.
feats_fields (Iterable[Tuple[str, Field]]): A list of name-field
pairs.
Attributes:
fields (Iterable[Tuple[str, Field]]): A list of name-field pairs.
The order is defined as the base field first, then
``feats_fields`` in alphabetical order.
"""
def __init__(self, base_name, base_field, feats_fields):
super(TextMultiField, self).__init__()
self.fields = [(base_name, base_field)]
for name, ff in sorted(feats_fields, key=lambda kv: kv[0]):
self.fields.append((name, ff))
@property
def base_field(self):
return self.fields[0][1]
def process(self, batch, device=None):
"""Convert outputs of preprocess into Tensors.
Args:
batch (List[List[List[str]]]): A list of length batch size.
Each element is a list of the preprocess results for each
field (which are lists of str "words" or feature tags.
device (torch.device or str): The device on which the tensor(s)
are built.
Returns:
torch.LongTensor or Tuple[LongTensor, LongTensor]:
A tensor of shape ``(seq_len, batch_size, len(self.fields))``
where the field features are ordered like ``self.fields``.
If the base field returns lengths, these are also returned
and have shape ``(batch_size,)``.
"""
# batch (list(list(list))): batch_size x len(self.fields) x seq_len
batch_by_feat = list(zip(*batch))
base_data = self.base_field.process(batch_by_feat[0], device=device)
if self.base_field.include_lengths:
# lengths: batch_size
base_data, lengths = base_data
feats = [ff.process(batch_by_feat[i], device=device)
for i, (_, ff) in enumerate(self.fields[1:], 1)]
levels = [base_data] + feats
# data: seq_len x batch_size x len(self.fields)
data = torch.stack(levels, 2)
if self.base_field.include_lengths:
return data, lengths
else:
return data
def preprocess(self, x):
"""Preprocess data.
Args:
x (str): A sentence string (words joined by whitespace).
Returns:
List[List[str]]: A list of length ``len(self.fields)`` containing
lists of tokens/feature tags for the sentence. The output
is ordered like ``self.fields``.
"""
return [f.preprocess(x[fn]) for fn, f in self.fields]
def __getitem__(self, item):
return self.fields[item]
def text_fields(**kwargs):
"""Create text fields.
Args:
base_name (str): Name associated with the field.
feats (Optional[Dict]): Word level feats
include_lengths (bool): Optionally return the sequence lengths.
pad (str, optional): Defaults to ``"<blank>"``.
bos (str or NoneType, optional): Defaults to ``"<s>"``.
eos (str or NoneType, optional): Defaults to ``"</s>"``.
truncate (bool or NoneType, optional): Defaults to ``None``.
Returns:
TextMultiField
"""
feats = kwargs["feats"]
include_lengths = kwargs["include_lengths"]
base_name = kwargs["base_name"]
pad = kwargs.get("pad", DefaultTokens.PAD)
bos = kwargs.get("bos", DefaultTokens.BOS)
eos = kwargs.get("eos", DefaultTokens.EOS)
truncate = kwargs.get("truncate", None)
fields_ = []
feat_delim = None # u"│" if n_feats > 0 else None
# Base field
tokenize = partial(
_feature_tokenize,
layer=None,
truncate=truncate,
feat_delim=feat_delim)
feat = Field(
init_token=bos, eos_token=eos,
pad_token=pad, tokenize=tokenize,
include_lengths=include_lengths)
fields_.append((base_name, feat))
# Feats fields
if feats:
for feat_name in feats.keys():
# Legacy function, it is not really necessary
tokenize = partial(
_feature_tokenize,
layer=None,
truncate=truncate,
feat_delim=feat_delim)
feat = Field(
init_token=bos, eos_token=eos,
pad_token=pad, tokenize=tokenize,
include_lengths=False)
fields_.append((feat_name, feat))
assert fields_[0][0] == base_name # sanity check
field = TextMultiField(fields_[0][0], fields_[0][1], fields_[1:])
return field
|