File size: 24,384 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
""" SRU Implementation """
# flake8: noqa
import subprocess
import platform
import os
import re
import configargparse
import torch
import torch.nn as nn
from torch.autograd import Function
from torch.cuda.amp import custom_fwd, custom_bwd
from collections import namedtuple
# For command-line option parsing
class CheckSRU(configargparse.Action):
def __init__(self, option_strings, dest, **kwargs):
super(CheckSRU, self).__init__(option_strings, dest, **kwargs)
def __call__(self, parser, namespace, values, option_string=None):
if values == 'SRU':
check_sru_requirement(abort=True)
# Check pass, set the args.
setattr(namespace, self.dest, values)
# This SRU version implements its own cuda-level optimization,
# so it requires that:
# 1. `cupy` and `pynvrtc` python package installed.
# 2. pytorch is built with cuda support.
# 3. library path set: export LD_LIBRARY_PATH=<cuda lib path>.
def check_sru_requirement(abort=False):
"""
Return True if check pass; if check fails and abort is True,
raise an Exception, othereise return False.
"""
# Check 1.
try:
if platform.system() == 'Windows':
subprocess.check_output('pip freeze | findstr cupy', shell=True)
subprocess.check_output('pip freeze | findstr pynvrtc',
shell=True)
else: # Unix-like systems
subprocess.check_output('pip freeze | grep -w cupy', shell=True)
subprocess.check_output('pip freeze | grep -w pynvrtc',
shell=True)
except subprocess.CalledProcessError:
if not abort:
return False
raise AssertionError("Using SRU requires 'cupy' and 'pynvrtc' "
"python packages installed.")
# Check 2.
if torch.cuda.is_available() is False:
if not abort:
return False
raise AssertionError("Using SRU requires pytorch built with cuda.")
# Check 3.
pattern = re.compile(".*cuda/lib.*")
ld_path = os.getenv('LD_LIBRARY_PATH', "")
if re.match(pattern, ld_path) is None:
if not abort:
return False
raise AssertionError("Using SRU requires setting cuda lib path, e.g. "
"export LD_LIBRARY_PATH=/usr/local/cuda/lib64.")
return True
SRU_CODE = """
extern "C" {
__forceinline__ __device__ float sigmoidf(float x)
{
return 1.f / (1.f + expf(-x));
}
__forceinline__ __device__ float reluf(float x)
{
return (x > 0.f) ? x : 0.f;
}
__global__ void sru_fwd(const float * __restrict__ u,
const float * __restrict__ x,
const float * __restrict__ bias,
const float * __restrict__ init,
const float * __restrict__ mask_h,
const int len, const int batch,
const int d, const int k,
float * __restrict__ h,
float * __restrict__ c,
const int activation_type)
{
assert ((k == 3) || (x == NULL));
int ncols = batch*d;
int col = blockIdx.x * blockDim.x + threadIdx.x;
if (col >= ncols) return;
int ncols_u = ncols*k;
int ncols_x = (k == 3) ? ncols : ncols_u;
const float bias1 = *(bias + (col%d));
const float bias2 = *(bias + (col%d) + d);
const float mask = (mask_h == NULL) ? 1.0 : (*(mask_h + col));
float cur = *(init + col);
const float *up = u + (col*k);
const float *xp = (k == 3) ? (x + col) : (up + 3);
float *cp = c + col;
float *hp = h + col;
for (int row = 0; row < len; ++row)
{
float g1 = sigmoidf((*(up+1))+bias1);
float g2 = sigmoidf((*(up+2))+bias2);
cur = (cur-(*up))*g1 + (*up);
*cp = cur;
float val = (activation_type == 1) ? tanh(cur) : (
(activation_type == 2) ? reluf(cur) : cur
);
*hp = (val*mask-(*xp))*g2 + (*xp);
up += ncols_u;
xp += ncols_x;
cp += ncols;
hp += ncols;
}
}
__global__ void sru_bwd(const float * __restrict__ u,
const float * __restrict__ x,
const float * __restrict__ bias,
const float * __restrict__ init,
const float * __restrict__ mask_h,
const float * __restrict__ c,
const float * __restrict__ grad_h,
const float * __restrict__ grad_last,
const int len,
const int batch, const int d, const int k,
float * __restrict__ grad_u,
float * __restrict__ grad_x,
float * __restrict__ grad_bias,
float * __restrict__ grad_init,
int activation_type)
{
assert((k == 3) || (x == NULL));
assert((k == 3) || (grad_x == NULL));
int ncols = batch*d;
int col = blockIdx.x * blockDim.x + threadIdx.x;
if (col >= ncols) return;
int ncols_u = ncols*k;
int ncols_x = (k == 3) ? ncols : ncols_u;
const float bias1 = *(bias + (col%d));
const float bias2 = *(bias + (col%d) + d);
const float mask = (mask_h == NULL) ? 1.0 : (*(mask_h + col));
float gbias1 = 0;
float gbias2 = 0;
float cur = *(grad_last + col);
const float *up = u + (col*k) + (len-1)*ncols_u;
const float *xp = (k == 3) ? (x + col + (len-1)*ncols) : (up + 3);
const float *cp = c + col + (len-1)*ncols;
const float *ghp = grad_h + col + (len-1)*ncols;
float *gup = grad_u + (col*k) + (len-1)*ncols_u;
float *gxp = (k == 3) ? (grad_x + col + (len-1)*ncols) : (gup + 3);
for (int row = len-1; row >= 0; --row)
{
const float g1 = sigmoidf((*(up+1))+bias1);
const float g2 = sigmoidf((*(up+2))+bias2);
const float c_val = (activation_type == 1) ? tanh(*cp) : (
(activation_type == 2) ? reluf(*cp) : (*cp)
);
const float x_val = *xp;
const float u_val = *up;
const float prev_c_val = (row>0) ? (*(cp-ncols)) : (*(init+col));
const float gh_val = *ghp;
// h = c*g2 + x*(1-g2) = (c-x)*g2 + x
// c = c'*g1 + g0*(1-g1) = (c'-g0)*g1 + g0
// grad wrt x
*gxp = gh_val*(1-g2);
// grad wrt g2, u2 and bias2
float gg2 = gh_val*(c_val*mask-x_val)*(g2*(1-g2));
*(gup+2) = gg2;
gbias2 += gg2;
// grad wrt c
const float tmp = (activation_type == 1) ? (g2*(1-c_val*c_val)) : (
((activation_type == 0) || (c_val > 0)) ? g2 : 0.f
);
const float gc = gh_val*mask*tmp + cur;
// grad wrt u0
*gup = gc*(1-g1);
// grad wrt g1, u1, and bias1
float gg1 = gc*(prev_c_val-u_val)*(g1*(1-g1));
*(gup+1) = gg1;
gbias1 += gg1;
// grad wrt c'
cur = gc*g1;
up -= ncols_u;
xp -= ncols_x;
cp -= ncols;
gup -= ncols_u;
gxp -= ncols_x;
ghp -= ncols;
}
*(grad_bias + col) = gbias1;
*(grad_bias + col + ncols) = gbias2;
*(grad_init +col) = cur;
}
__global__ void sru_bi_fwd(const float * __restrict__ u,
const float * __restrict__ x,
const float * __restrict__ bias,
const float * __restrict__ init,
const float * __restrict__ mask_h,
const int len, const int batch,
const int d, const int k,
float * __restrict__ h,
float * __restrict__ c,
const int activation_type)
{
assert ((k == 3) || (x == NULL));
assert ((k == 3) || (k == 4));
int ncols = batch*d*2;
int col = blockIdx.x * blockDim.x + threadIdx.x;
if (col >= ncols) return;
int ncols_u = ncols*k;
int ncols_x = (k == 3) ? ncols : ncols_u;
const float mask = (mask_h == NULL) ? 1.0 : (*(mask_h + col));
float cur = *(init + col);
const int d2 = d*2;
const bool flip = (col%d2) >= d;
const float bias1 = *(bias + (col%d2));
const float bias2 = *(bias + (col%d2) + d2);
const float *up = u + (col*k);
const float *xp = (k == 3) ? (x + col) : (up + 3);
float *cp = c + col;
float *hp = h + col;
if (flip) {
up += (len-1)*ncols_u;
xp += (len-1)*ncols_x;
cp += (len-1)*ncols;
hp += (len-1)*ncols;
}
int ncols_u_ = flip ? -ncols_u : ncols_u;
int ncols_x_ = flip ? -ncols_x : ncols_x;
int ncols_ = flip ? -ncols : ncols;
for (int cnt = 0; cnt < len; ++cnt)
{
float g1 = sigmoidf((*(up+1))+bias1);
float g2 = sigmoidf((*(up+2))+bias2);
cur = (cur-(*up))*g1 + (*up);
*cp = cur;
float val = (activation_type == 1) ? tanh(cur) : (
(activation_type == 2) ? reluf(cur) : cur
);
*hp = (val*mask-(*xp))*g2 + (*xp);
up += ncols_u_;
xp += ncols_x_;
cp += ncols_;
hp += ncols_;
}
}
__global__ void sru_bi_bwd(const float * __restrict__ u,
const float * __restrict__ x,
const float * __restrict__ bias,
const float * __restrict__ init,
const float * __restrict__ mask_h,
const float * __restrict__ c,
const float * __restrict__ grad_h,
const float * __restrict__ grad_last,
const int len, const int batch,
const int d, const int k,
float * __restrict__ grad_u,
float * __restrict__ grad_x,
float * __restrict__ grad_bias,
float * __restrict__ grad_init,
int activation_type)
{
assert((k == 3) || (x == NULL));
assert((k == 3) || (grad_x == NULL));
assert((k == 3) || (k == 4));
int ncols = batch*d*2;
int col = blockIdx.x * blockDim.x + threadIdx.x;
if (col >= ncols) return;
int ncols_u = ncols*k;
int ncols_x = (k == 3) ? ncols : ncols_u;
const float mask = (mask_h == NULL) ? 1.0 : (*(mask_h + col));
float gbias1 = 0;
float gbias2 = 0;
float cur = *(grad_last + col);
const int d2 = d*2;
const bool flip = ((col%d2) >= d);
const float bias1 = *(bias + (col%d2));
const float bias2 = *(bias + (col%d2) + d2);
const float *up = u + (col*k);
const float *xp = (k == 3) ? (x + col) : (up + 3);
const float *cp = c + col;
const float *ghp = grad_h + col;
float *gup = grad_u + (col*k);
float *gxp = (k == 3) ? (grad_x + col) : (gup + 3);
if (!flip) {
up += (len-1)*ncols_u;
xp += (len-1)*ncols_x;
cp += (len-1)*ncols;
ghp += (len-1)*ncols;
gup += (len-1)*ncols_u;
gxp += (len-1)*ncols_x;
}
int ncols_u_ = flip ? -ncols_u : ncols_u;
int ncols_x_ = flip ? -ncols_x : ncols_x;
int ncols_ = flip ? -ncols : ncols;
for (int cnt = 0; cnt < len; ++cnt)
{
const float g1 = sigmoidf((*(up+1))+bias1);
const float g2 = sigmoidf((*(up+2))+bias2);
const float c_val = (activation_type == 1) ? tanh(*cp) : (
(activation_type == 2) ? reluf(*cp) : (*cp)
);
const float x_val = *xp;
const float u_val = *up;
const float prev_c_val = (cnt<len-1)?(*(cp-ncols_)):(*(init+col));
const float gh_val = *ghp;
// h = c*g2 + x*(1-g2) = (c-x)*g2 + x
// c = c'*g1 + g0*(1-g1) = (c'-g0)*g1 + g0
// grad wrt x
*gxp = gh_val*(1-g2);
// grad wrt g2, u2 and bias2
float gg2 = gh_val*(c_val*mask-x_val)*(g2*(1-g2));
*(gup+2) = gg2;
gbias2 += gg2;
// grad wrt c
const float tmp = (activation_type == 1) ? (g2*(1-c_val*c_val)) : (
((activation_type == 0) || (c_val > 0)) ? g2 : 0.f
);
const float gc = gh_val*mask*tmp + cur;
// grad wrt u0
*gup = gc*(1-g1);
// grad wrt g1, u1, and bias1
float gg1 = gc*(prev_c_val-u_val)*(g1*(1-g1));
*(gup+1) = gg1;
gbias1 += gg1;
// grad wrt c'
cur = gc*g1;
up -= ncols_u_;
xp -= ncols_x_;
cp -= ncols_;
gup -= ncols_u_;
gxp -= ncols_x_;
ghp -= ncols_;
}
*(grad_bias + col) = gbias1;
*(grad_bias + col + ncols) = gbias2;
*(grad_init +col) = cur;
}
}
"""
SRU_FWD_FUNC, SRU_BWD_FUNC = None, None
SRU_BiFWD_FUNC, SRU_BiBWD_FUNC = None, None
SRU_STREAM = None
def load_sru_mod():
global SRU_FWD_FUNC, SRU_BWD_FUNC, SRU_BiFWD_FUNC, SRU_BiBWD_FUNC
global SRU_STREAM
if check_sru_requirement():
from cupy.cuda import function
from pynvrtc.compiler import Program
# This sets up device to use.
device = torch.device("cuda")
tmp_ = torch.rand(1, 1).to(device)
sru_prog = Program(SRU_CODE.encode('utf-8'),
'sru_prog.cu'.encode('utf-8'))
sru_ptx = sru_prog.compile()
sru_mod = function.Module()
sru_mod.load(bytes(sru_ptx.encode()))
SRU_FWD_FUNC = sru_mod.get_function('sru_fwd')
SRU_BWD_FUNC = sru_mod.get_function('sru_bwd')
SRU_BiFWD_FUNC = sru_mod.get_function('sru_bi_fwd')
SRU_BiBWD_FUNC = sru_mod.get_function('sru_bi_bwd')
stream = namedtuple('Stream', ['ptr'])
SRU_STREAM = stream(ptr=torch.cuda.current_stream().cuda_stream)
class SRU_Compute(Function):
def __init__(self, activation_type, d_out, bidirectional=False):
SRU_Compute.maybe_load_sru_mod()
super(SRU_Compute, self).__init__()
self.activation_type = activation_type
self.d_out = d_out
self.bidirectional = bidirectional
@staticmethod
def maybe_load_sru_mod():
global SRU_FWD_FUNC
if SRU_FWD_FUNC is None:
load_sru_mod()
@custom_fwd
def forward(self, u, x, bias, init=None, mask_h=None):
bidir = 2 if self.bidirectional else 1
length = x.size(0) if x.dim() == 3 else 1
batch = x.size(-2)
d = self.d_out
k = u.size(-1) // d
k_ = k // 2 if self.bidirectional else k
ncols = batch * d * bidir
thread_per_block = min(512, ncols)
num_block = (ncols - 1) // thread_per_block + 1
init_ = x.new(ncols).zero_() if init is None else init
size = (length, batch, d * bidir) if x.dim() == 3 else (batch, d * bidir)
c = x.new(*size)
h = x.new(*size)
FUNC = SRU_FWD_FUNC if not self.bidirectional else SRU_BiFWD_FUNC
FUNC(args=[
u.contiguous().data_ptr(),
x.contiguous().data_ptr() if k_ == 3 else 0,
bias.data_ptr(),
init_.contiguous().data_ptr(),
mask_h.data_ptr() if mask_h is not None else 0,
length,
batch,
d,
k_,
h.data_ptr(),
c.data_ptr(),
self.activation_type],
block=(thread_per_block, 1, 1), grid=(num_block, 1, 1),
stream=SRU_STREAM
)
self.save_for_backward(u, x, bias, init, mask_h)
self.intermediate = c
if x.dim() == 2:
last_hidden = c
elif self.bidirectional:
# -> directions x batch x dim
last_hidden = torch.stack((c[-1, :, :d], c[0, :, d:]))
else:
last_hidden = c[-1]
return h, last_hidden
@custom_bwd
def backward(self, grad_h, grad_last):
if self.bidirectional:
grad_last = torch.cat((grad_last[0], grad_last[1]), 1)
bidir = 2 if self.bidirectional else 1
u, x, bias, init, mask_h = self.saved_tensors
c = self.intermediate
length = x.size(0) if x.dim() == 3 else 1
batch = x.size(-2)
d = self.d_out
k = u.size(-1) // d
k_ = k // 2 if self.bidirectional else k
ncols = batch * d * bidir
thread_per_block = min(512, ncols)
num_block = (ncols - 1) // thread_per_block + 1
init_ = x.new(ncols).zero_() if init is None else init
grad_u = u.new(*u.size())
grad_bias = x.new(2, batch, d * bidir)
grad_init = x.new(batch, d * bidir)
# For DEBUG
# size = (length, batch, x.size(-1)) \
# if x.dim() == 3 else (batch, x.size(-1))
# grad_x = x.new(*x.size()) if k_ == 3 else x.new(*size).zero_()
# Normal use
grad_x = x.new(*x.size()) if k_ == 3 else None
FUNC = SRU_BWD_FUNC if not self.bidirectional else SRU_BiBWD_FUNC
FUNC(args=[
u.contiguous().data_ptr(),
x.contiguous().data_ptr() if k_ == 3 else 0,
bias.data_ptr(),
init_.contiguous().data_ptr(),
mask_h.data_ptr() if mask_h is not None else 0,
c.data_ptr(),
grad_h.contiguous().data_ptr(),
grad_last.contiguous().data_ptr(),
length,
batch,
d,
k_,
grad_u.data_ptr(),
grad_x.data_ptr() if k_ == 3 else 0,
grad_bias.data_ptr(),
grad_init.data_ptr(),
self.activation_type],
block=(thread_per_block, 1, 1), grid=(num_block, 1, 1),
stream=SRU_STREAM
)
return grad_u, grad_x, grad_bias.sum(1).view(-1), grad_init, None
class SRUCell(nn.Module):
def __init__(self, n_in, n_out, dropout=0, rnn_dropout=0,
bidirectional=False, use_tanh=1, use_relu=0):
super(SRUCell, self).__init__()
self.n_in = n_in
self.n_out = n_out
self.rnn_dropout = rnn_dropout
self.dropout = dropout
self.bidirectional = bidirectional
self.activation_type = 2 if use_relu else (1 if use_tanh else 0)
out_size = n_out * 2 if bidirectional else n_out
k = 4 if n_in != out_size else 3
self.size_per_dir = n_out * k
self.weight = nn.Parameter(torch.Tensor(
n_in,
self.size_per_dir * 2 if bidirectional else self.size_per_dir
))
self.bias = nn.Parameter(torch.Tensor(
n_out * 4 if bidirectional else n_out * 2
))
self.init_weight()
def init_weight(self):
val_range = (3.0 / self.n_in)**0.5
self.weight.data.uniform_(-val_range, val_range)
self.bias.data.zero_()
def set_bias(self, bias_val=0):
n_out = self.n_out
if self.bidirectional:
self.bias.data[n_out * 2:].zero_().add_(bias_val)
else:
self.bias.data[n_out:].zero_().add_(bias_val)
def forward(self, input, c0=None):
assert input.dim() == 2 or input.dim() == 3
n_in, n_out = self.n_in, self.n_out
batch = input.size(-2)
if c0 is None:
c0 = input.data.new(
batch, n_out if not self.bidirectional else n_out * 2
).zero_()
if self.training and (self.rnn_dropout > 0):
mask = self.get_dropout_mask_((batch, n_in), self.rnn_dropout)
x = input * mask.expand_as(input)
else:
x = input
x_2d = x if x.dim() == 2 else x.contiguous().view(-1, n_in)
u = x_2d.mm(self.weight)
if self.training and (self.dropout > 0):
bidir = 2 if self.bidirectional else 1
mask_h = self.get_dropout_mask_(
(batch, n_out * bidir), self.dropout)
h, c = SRU_Compute(self.activation_type, n_out,
self.bidirectional)(
u, input, self.bias, c0, mask_h
)
else:
h, c = SRU_Compute(self.activation_type, n_out,
self.bidirectional)(
u, input, self.bias, c0
)
return h, c
def get_dropout_mask_(self, size, p):
w = self.weight.data
return w.new(*size).bernoulli_(1 - p).div_(1 - p)
class SRU(nn.Module):
"""
Implementation of "Training RNNs as Fast as CNNs"
:cite:`DBLP:journals/corr/abs-1709-02755`
TODO: turn to pytorch's implementation when it is available.
This implementation is adpoted from the author of the paper:
https://github.com/taolei87/sru/blob/master/cuda_functional.py.
Args:
input_size (int): input to model
hidden_size (int): hidden dimension
num_layers (int): number of layers
dropout (float): dropout to use (stacked)
rnn_dropout (float): dropout to use (recurrent)
bidirectional (bool): bidirectional
use_tanh (bool): activation
use_relu (bool): activation
"""
def __init__(self, input_size, hidden_size,
num_layers=2, dropout=0, rnn_dropout=0,
bidirectional=False, use_tanh=1, use_relu=0):
# An entry check here, will catch on train side and translate side
# if requirements are not satisfied.
check_sru_requirement(abort=True)
super(SRU, self).__init__()
self.n_in = input_size
self.n_out = hidden_size
self.depth = num_layers
self.dropout = dropout
self.rnn_dropout = rnn_dropout
self.rnn_lst = nn.ModuleList()
self.bidirectional = bidirectional
self.out_size = hidden_size * 2 if bidirectional else hidden_size
for i in range(num_layers):
sru_cell = SRUCell(
n_in=self.n_in if i == 0 else self.out_size,
n_out=self.n_out,
dropout=dropout if i + 1 != num_layers else 0,
rnn_dropout=rnn_dropout,
bidirectional=bidirectional,
use_tanh=use_tanh,
use_relu=use_relu,
)
self.rnn_lst.append(sru_cell)
def set_bias(self, bias_val=0):
for l in self.rnn_lst:
l.set_bias(bias_val)
def forward(self, input, c0=None, return_hidden=True):
assert input.dim() == 3 # (len, batch, n_in)
dir_ = 2 if self.bidirectional else 1
if c0 is None:
zeros = input.data.new(
input.size(1), self.n_out * dir_
).zero_()
c0 = [zeros for i in range(self.depth)]
else:
if isinstance(c0, tuple):
# RNNDecoderState wraps hidden as a tuple.
c0 = c0[0]
assert c0.dim() == 3 # (depth, batch, dir_*n_out)
c0 = [h.squeeze(0) for h in c0.chunk(self.depth, 0)]
prevx = input
lstc = []
for i, rnn in enumerate(self.rnn_lst):
h, c = rnn(prevx, c0[i])
prevx = h
lstc.append(c)
if self.bidirectional:
# fh -> (layers*directions) x batch x dim
fh = torch.cat(lstc)
else:
fh = torch.stack(lstc)
if return_hidden:
return prevx, fh
else:
return prevx
|