File size: 1,994 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
""" Implementation of ONMT RNN for Input Feeding Decoding """
import torch
import torch.nn as nn
class StackedLSTM(nn.Module):
"""
Our own implementation of stacked LSTM.
Needed for the decoder, because we do input feeding.
"""
def __init__(self, num_layers, input_size, rnn_size, dropout):
super(StackedLSTM, self).__init__()
self.dropout = nn.Dropout(dropout)
self.num_layers = num_layers
self.layers = nn.ModuleList()
for _ in range(num_layers):
self.layers.append(nn.LSTMCell(input_size, rnn_size))
input_size = rnn_size
def forward(self, input_feed, hidden):
h_0, c_0 = hidden
h_1, c_1 = [], []
for i, layer in enumerate(self.layers):
h_1_i, c_1_i = layer(input_feed, (h_0[i], c_0[i]))
input_feed = h_1_i
if i + 1 != self.num_layers:
input_feed = self.dropout(input_feed)
h_1 += [h_1_i]
c_1 += [c_1_i]
h_1 = torch.stack(h_1)
c_1 = torch.stack(c_1)
return input_feed, (h_1, c_1)
class StackedGRU(nn.Module):
"""
Our own implementation of stacked GRU.
Needed for the decoder, because we do input feeding.
"""
def __init__(self, num_layers, input_size, rnn_size, dropout):
super(StackedGRU, self).__init__()
self.dropout = nn.Dropout(dropout)
self.num_layers = num_layers
self.layers = nn.ModuleList()
for _ in range(num_layers):
self.layers.append(nn.GRUCell(input_size, rnn_size))
input_size = rnn_size
def forward(self, input_feed, hidden):
h_1 = []
for i, layer in enumerate(self.layers):
h_1_i = layer(input_feed, hidden[0][i])
input_feed = h_1_i
if i + 1 != self.num_layers:
input_feed = self.dropout(input_feed)
h_1 += [h_1_i]
h_1 = torch.stack(h_1)
return input_feed, (h_1,)
|