File size: 9,775 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""  Weights normalization modules  """
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter


def get_var_maybe_avg(namespace, var_name, training, polyak_decay):
    """ utility for retrieving polyak averaged params
        Update average
    """
    v = getattr(namespace, var_name)
    v_avg = getattr(namespace, var_name + '_avg')
    v_avg -= (1 - polyak_decay) * (v_avg - v.data)

    if training:
        return v
    else:
        return v_avg


def get_vars_maybe_avg(namespace, var_names, training, polyak_decay):
    """ utility for retrieving polyak averaged params """
    vars = []
    for vn in var_names:
        vars.append(get_var_maybe_avg(
            namespace, vn, training, polyak_decay))
    return vars


class WeightNormLinear(nn.Linear):
    """
    Implementation of "Weight Normalization: A Simple Reparameterization
    to Accelerate Training of Deep Neural Networks"
    :cite:`DBLP:journals/corr/SalimansK16`

    As a reparameterization method, weight normalization is same
    as BatchNormalization, but it doesn't depend on minibatch.

    NOTE: This is used nowhere in the code at this stage
          Vincent Nguyen 05/18/2018
    """

    def __init__(self, in_features, out_features,
                 init_scale=1., polyak_decay=0.9995):
        super(WeightNormLinear, self).__init__(
            in_features, out_features, bias=True)

        self.V = self.weight
        self.g = Parameter(torch.Tensor(out_features))
        self.b = self.bias

        self.register_buffer(
            'V_avg', torch.zeros(out_features, in_features))
        self.register_buffer('g_avg', torch.zeros(out_features))
        self.register_buffer('b_avg', torch.zeros(out_features))

        self.init_scale = init_scale
        self.polyak_decay = polyak_decay
        self.reset_parameters()

    def reset_parameters(self):
        return

    def forward(self, x, init=False):
        if init is True:
            # out_features * in_features
            self.V.data.copy_(torch.randn(self.V.data.size()).type_as(
                self.V.data) * 0.05)
            # norm is out_features * 1
            v_norm = self.V.data / \
                self.V.data.norm(2, 1).expand_as(self.V.data)
            # batch_size * out_features
            x_init = F.linear(x, v_norm).data
            # out_features
            m_init, v_init = x_init.mean(0).squeeze(
                0), x_init.var(0).squeeze(0)
            # out_features
            scale_init = self.init_scale / \
                torch.sqrt(v_init + 1e-10)
            self.g.data.copy_(scale_init)
            self.b.data.copy_(-m_init * scale_init)
            x_init = scale_init.view(1, -1).expand_as(x_init) \
                * (x_init - m_init.view(1, -1).expand_as(x_init))
            self.V_avg.copy_(self.V.data)
            self.g_avg.copy_(self.g.data)
            self.b_avg.copy_(self.b.data)
            return x_init
        else:
            v, g, b = get_vars_maybe_avg(self, ['V', 'g', 'b'],
                                         self.training,
                                         polyak_decay=self.polyak_decay)
            # batch_size * out_features
            x = F.linear(x, v)
            scalar = g / torch.norm(v, 2, 1).squeeze(1)
            x = scalar.view(1, -1).expand_as(x) * x + \
                b.view(1, -1).expand_as(x)
            return x


class WeightNormConv2d(nn.Conv2d):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, init_scale=1.,
                 polyak_decay=0.9995):
        super(WeightNormConv2d, self).__init__(in_channels, out_channels,
                                               kernel_size, stride, padding,
                                               dilation, groups)

        self.V = self.weight
        self.g = Parameter(torch.Tensor(out_channels))
        self.b = self.bias

        self.register_buffer('V_avg', torch.zeros(self.V.size()))
        self.register_buffer('g_avg', torch.zeros(out_channels))
        self.register_buffer('b_avg', torch.zeros(out_channels))

        self.init_scale = init_scale
        self.polyak_decay = polyak_decay
        self.reset_parameters()

    def reset_parameters(self):
        return

    def forward(self, x, init=False):
        if init is True:
            # out_channels, in_channels // groups, * kernel_size
            self.V.data.copy_(torch.randn(self.V.data.size()
                                          ).type_as(self.V.data) * 0.05)
            v_norm = self.V.data / self.V.data.view(self.out_channels, -1)\
                .norm(2, 1).view(self.out_channels, *(
                    [1] * (len(self.kernel_size) + 1))).expand_as(self.V.data)
            x_init = F.conv2d(x, v_norm, None, self.stride,
                              self.padding, self.dilation, self.groups).data
            t_x_init = x_init.transpose(0, 1).contiguous().view(
                self.out_channels, -1)
            m_init, v_init = t_x_init.mean(1).squeeze(
                1), t_x_init.var(1).squeeze(1)
            # out_features
            scale_init = self.init_scale / \
                torch.sqrt(v_init + 1e-10)
            self.g.data.copy_(scale_init)
            self.b.data.copy_(-m_init * scale_init)
            scale_init_shape = scale_init.view(
                1, self.out_channels, *([1] * (len(x_init.size()) - 2)))
            m_init_shape = m_init.view(
                1, self.out_channels, *([1] * (len(x_init.size()) - 2)))
            x_init = scale_init_shape.expand_as(
                x_init) * (x_init - m_init_shape.expand_as(x_init))
            self.V_avg.copy_(self.V.data)
            self.g_avg.copy_(self.g.data)
            self.b_avg.copy_(self.b.data)
            return x_init
        else:
            v, g, b = get_vars_maybe_avg(
                self, ['V', 'g', 'b'], self.training,
                polyak_decay=self.polyak_decay)

            scalar = torch.norm(v.view(self.out_channels, -1), 2, 1)
            if len(scalar.size()) == 2:
                scalar = g / scalar.squeeze(1)
            else:
                scalar = g / scalar

            w = scalar.view(self.out_channels, *
                            ([1] * (len(v.size()) - 1))).expand_as(v) * v

            x = F.conv2d(x, w, b, self.stride,
                         self.padding, self.dilation, self.groups)
            return x

# This is used nowhere in the code at the moment (Vincent Nguyen 05/18/2018)


class WeightNormConvTranspose2d(nn.ConvTranspose2d):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, output_padding=0, groups=1, init_scale=1.,
                 polyak_decay=0.9995):
        super(WeightNormConvTranspose2d, self).__init__(
            in_channels, out_channels,
            kernel_size, stride,
            padding, output_padding,
            groups)
        # in_channels, out_channels, *kernel_size
        self.V = self.weight
        self.g = Parameter(torch.Tensor(out_channels))
        self.b = self.bias

        self.register_buffer('V_avg', torch.zeros(self.V.size()))
        self.register_buffer('g_avg', torch.zeros(out_channels))
        self.register_buffer('b_avg', torch.zeros(out_channels))

        self.init_scale = init_scale
        self.polyak_decay = polyak_decay
        self.reset_parameters()

    def reset_parameters(self):
        return

    def forward(self, x, init=False):
        if init is True:
            # in_channels, out_channels, *kernel_size
            self.V.data.copy_(torch.randn(self.V.data.size()).type_as(
                self.V.data) * 0.05)
            v_norm = self.V.data / self.V.data.transpose(0, 1).contiguous() \
                .view(self.out_channels, -1).norm(2, 1).view(
                    self.in_channels, self.out_channels,
                    *([1] * len(self.kernel_size))).expand_as(self.V.data)
            x_init = F.conv_transpose2d(
                x, v_norm, None, self.stride,
                self.padding, self.output_padding, self.groups).data
            # self.out_channels, 1
            t_x_init = x_init.tranpose(0, 1).contiguous().view(
                self.out_channels, -1)
            # out_features
            m_init, v_init = t_x_init.mean(1).squeeze(
                1), t_x_init.var(1).squeeze(1)
            # out_features
            scale_init = self.init_scale / \
                torch.sqrt(v_init + 1e-10)
            self.g.data.copy_(scale_init)
            self.b.data.copy_(-m_init * scale_init)
            scale_init_shape = scale_init.view(
                1, self.out_channels, *([1] * (len(x_init.size()) - 2)))
            m_init_shape = m_init.view(
                1, self.out_channels, *([1] * (len(x_init.size()) - 2)))

            x_init = scale_init_shape.expand_as(x_init)\
                * (x_init - m_init_shape.expand_as(x_init))
            self.V_avg.copy_(self.V.data)
            self.g_avg.copy_(self.g.data)
            self.b_avg.copy_(self.b.data)
            return x_init
        else:
            v, g, b = get_vars_maybe_avg(
                self, ['V', 'g', 'b'], self.training,
                polyak_decay=self.polyak_decay)
            scalar = g / \
                torch.norm(v.transpose(0, 1).contiguous().view(
                    self.out_channels, -1), 2, 1).squeeze(1)
            w = scalar.view(self.in_channels, self.out_channels,
                            *([1] * (len(v.size()) - 2))).expand_as(v) * v

            x = F.conv_transpose2d(x, w, b, self.stride,
                                   self.padding, self.output_padding,
                                   self.groups)
            return x