File size: 44,086 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 |
""" Implementation of all available options """
import configargparse
from onmt.models.sru import CheckSRU
from onmt.transforms import AVAILABLE_TRANSFORMS
from onmt.constants import ModelTask
from onmt.modules.position_ffn import ACTIVATION_FUNCTIONS
from onmt.modules.position_ffn import ActivationFunction
def config_opts(parser):
group = parser.add_argument_group("Configuration")
group.add('-config', '--config', required=False,
is_config_file_arg=True,
help='Path of the main YAML config file.')
group.add('-save_config', '--save_config', required=False,
is_write_out_config_file_arg=True,
help='Path where to save the config.')
def _add_logging_opts(parser, is_train=True):
group = parser.add_argument_group('Logging')
group.add('--log_file', '-log_file', type=str, default="",
help="Output logs to a file under this path.")
group.add('--log_file_level', '-log_file_level', type=str,
action=StoreLoggingLevelAction,
choices=StoreLoggingLevelAction.CHOICES,
default="0")
group.add('--verbose', '-verbose', action="store_true",
help='Print data loading and statistics for all process'
'(default only log the first process shard)' if is_train
else 'Print scores and predictions for each sentence')
if is_train:
group.add('--report_every', '-report_every', type=int, default=50,
help="Print stats at this interval.")
group.add('--exp_host', '-exp_host', type=str, default="",
help="Send logs to this crayon server.")
group.add('--exp', '-exp', type=str, default="",
help="Name of the experiment for logging.")
# Use Tensorboard for visualization during training
group.add('--tensorboard', '-tensorboard', action="store_true",
help="Use tensorboard for visualization during training. "
"Must have the library tensorboard >= 1.14.")
group.add("--tensorboard_log_dir", "-tensorboard_log_dir",
type=str, default="runs/onmt",
help="Log directory for Tensorboard. "
"This is also the name of the run.")
else:
# Options only during inference
group.add('--attn_debug', '-attn_debug', action="store_true",
help='Print best attn for each word')
group.add('--align_debug', '-align_debug', action="store_true",
help='Print best align for each word')
group.add('--dump_beam', '-dump_beam', type=str, default="",
help='File to dump beam information to.')
group.add('--n_best', '-n_best', type=int, default=1,
help="If verbose is set, will output the n_best "
"decoded sentences")
def _add_reproducibility_opts(parser):
group = parser.add_argument_group('Reproducibility')
group.add('--seed', '-seed', type=int, default=-1,
help="Set random seed used for better "
"reproducibility between experiments.")
def _add_dynamic_corpus_opts(parser, build_vocab_only=False):
"""Options related to training corpus, type: a list of dictionary."""
group = parser.add_argument_group('Data')
group.add("-data", "--data", required=True,
help="List of datasets and their specifications. "
"See examples/*.yaml for further details.")
group.add("-skip_empty_level", "--skip_empty_level", default="warning",
choices=["silent", "warning", "error"],
help="Security level when encounter empty examples."
"silent: silently ignore/skip empty example;"
"warning: warning when ignore/skip empty example;"
"error: raise error & stop execution when encouter empty.")
group.add("-transforms", "--transforms", default=[], nargs="+",
choices=AVAILABLE_TRANSFORMS.keys(),
help="Default transform pipeline to apply to data. "
"Can be specified in each corpus of data to override.")
group.add("-save_data", "--save_data", required=build_vocab_only,
help="Output base path for objects that will "
"be saved (vocab, transforms, embeddings, ...).")
group.add("-overwrite", "--overwrite", action="store_true",
help="Overwrite existing objects if any.")
group.add(
'-n_sample', '--n_sample',
type=int, default=(5000 if build_vocab_only else 0),
help=("Build vocab using " if build_vocab_only else "Stop after save ")
+ "this number of transformed samples/corpus. Can be [-1, 0, N>0]. "
"Set to -1 to go full corpus, 0 to skip.")
if not build_vocab_only:
group.add('-dump_fields', '--dump_fields', action='store_true',
help="Dump fields `*.vocab.pt` to disk."
" -save_data should be set as saving prefix.")
group.add('-dump_transforms', '--dump_transforms', action='store_true',
help="Dump transforms `*.transforms.pt` to disk."
" -save_data should be set as saving prefix.")
else:
group.add('-dump_samples', '--dump_samples', action='store_true',
help="Dump samples when building vocab. "
"Warning: this may slow down the process.")
group.add('-num_threads', '--num_threads', type=int, default=1,
help="Number of parallel threads to build the vocab.")
group.add('-vocab_sample_queue_size', '--vocab_sample_queue_size',
type=int, default=20,
help="Size of queues used in the build_vocab dump path.")
def _add_dynamic_fields_opts(parser, build_vocab_only=False):
"""Options related to vocabulary and fields.
Add all options relate to vocabulary or fields to parser.
If `build_vocab_only` set to True, do not contain fields
related options which won't be used in `bin/build_vocab.py`.
"""
group = parser.add_argument_group("Vocab")
group.add("-src_vocab", "--src_vocab", required=True,
help=("Path to save" if build_vocab_only else "Path to")
+ " src (or shared) vocabulary file. "
"Format: one <word> or <word>\t<count> per line.")
group.add("-tgt_vocab", "--tgt_vocab",
help=("Path to save" if build_vocab_only else "Path to")
+ " tgt vocabulary file. "
"Format: one <word> or <word>\t<count> per line.")
group.add("-share_vocab", "--share_vocab", action="store_true",
help="Share source and target vocabulary.")
group.add("-src_feats_vocab", "--src_feats_vocab",
help=("List of paths to save"
if build_vocab_only
else "List of paths to")
+ " src features vocabulary files. "
"Files format: one <word> or <word>\t<count> per line.")
if not build_vocab_only:
group.add("-src_vocab_size", "--src_vocab_size",
type=int, default=50000,
help="Maximum size of the source vocabulary.")
group.add("-tgt_vocab_size", "--tgt_vocab_size",
type=int, default=50000,
help="Maximum size of the target vocabulary")
group.add("-vocab_size_multiple", "--vocab_size_multiple",
type=int, default=1,
help="Make the vocabulary size a multiple of this value.")
group.add("-src_words_min_frequency", "--src_words_min_frequency",
type=int, default=0,
help="Discard source words with lower frequency.")
group.add("-tgt_words_min_frequency", "--tgt_words_min_frequency",
type=int, default=0,
help="Discard target words with lower frequency.")
# Truncation options, for text corpus
group = parser.add_argument_group("Pruning")
group.add("--src_seq_length_trunc", "-src_seq_length_trunc",
type=int, default=None,
help="Truncate source sequence length.")
group.add("--tgt_seq_length_trunc", "-tgt_seq_length_trunc",
type=int, default=None,
help="Truncate target sequence length.")
group = parser.add_argument_group('Embeddings')
group.add('-both_embeddings', '--both_embeddings',
help="Path to the embeddings file to use "
"for both source and target tokens.")
group.add('-src_embeddings', '--src_embeddings',
help="Path to the embeddings file to use for source tokens.")
group.add('-tgt_embeddings', '--tgt_embeddings',
help="Path to the embeddings file to use for target tokens.")
group.add('-embeddings_type', '--embeddings_type',
choices=["GloVe", "word2vec"],
help="Type of embeddings file.")
def _add_dynamic_transform_opts(parser):
"""Options related to transforms.
Options that specified in the definitions of each transform class
at `onmt/transforms/*.py`.
"""
for name, transform_cls in AVAILABLE_TRANSFORMS.items():
transform_cls.add_options(parser)
def dynamic_prepare_opts(parser, build_vocab_only=False):
"""Options related to data prepare in dynamic mode.
Add all dynamic data prepare related options to parser.
If `build_vocab_only` set to True, then only contains options that
will be used in `onmt/bin/build_vocab.py`.
"""
config_opts(parser)
_add_dynamic_corpus_opts(parser, build_vocab_only=build_vocab_only)
_add_dynamic_fields_opts(parser, build_vocab_only=build_vocab_only)
_add_dynamic_transform_opts(parser)
if build_vocab_only:
_add_reproducibility_opts(parser)
# as for False, this will be added in _add_train_general_opts
def model_opts(parser):
"""
These options are passed to the construction of the model.
Be careful with these as they will be used during translation.
"""
# Embedding Options
group = parser.add_argument_group('Model-Embeddings')
group.add('--src_word_vec_size', '-src_word_vec_size',
type=int, default=500,
help='Word embedding size for src.')
group.add('--tgt_word_vec_size', '-tgt_word_vec_size',
type=int, default=500,
help='Word embedding size for tgt.')
group.add('--word_vec_size', '-word_vec_size', type=int, default=-1,
help='Word embedding size for src and tgt.')
group.add('--share_decoder_embeddings', '-share_decoder_embeddings',
action='store_true',
help="Use a shared weight matrix for the input and "
"output word embeddings in the decoder.")
group.add('--share_embeddings', '-share_embeddings', action='store_true',
help="Share the word embeddings between encoder "
"and decoder. Need to use shared dictionary for this "
"option.")
group.add('--position_encoding', '-position_encoding', action='store_true',
help="Use a sin to mark relative words positions. "
"Necessary for non-RNN style models.")
group.add("-update_vocab", "--update_vocab", action="store_true",
help="Update source and target existing vocabularies")
group = parser.add_argument_group('Model-Embedding Features')
group.add('--feat_merge', '-feat_merge', type=str, default='concat',
choices=['concat', 'sum', 'mlp'],
help="Merge action for incorporating features embeddings. "
"Options [concat|sum|mlp].")
group.add('--feat_vec_size', '-feat_vec_size', type=int, default=-1,
help="If specified, feature embedding sizes "
"will be set to this. Otherwise, feat_vec_exponent "
"will be used.")
group.add('--feat_vec_exponent', '-feat_vec_exponent',
type=float, default=0.7,
help="If -feat_merge_size is not set, feature "
"embedding sizes will be set to N^feat_vec_exponent "
"where N is the number of values the feature takes.")
# Model Task Options
group = parser.add_argument_group("Model- Task")
group.add(
"-model_task",
"--model_task",
default=ModelTask.SEQ2SEQ,
choices=[ModelTask.SEQ2SEQ, ModelTask.LANGUAGE_MODEL],
help="Type of task for the model either seq2seq or lm",
)
# Encoder-Decoder Options
group = parser.add_argument_group('Model- Encoder-Decoder')
group.add('--model_type', '-model_type', default='text',
choices=['text'],
help="Type of source model to use. Allows "
"the system to incorporate non-text inputs. "
"Options are [text].")
group.add('--model_dtype', '-model_dtype', default='fp32',
choices=['fp32', 'fp16'],
help='Data type of the model.')
group.add('--encoder_type', '-encoder_type', type=str, default='rnn',
choices=['rnn', 'brnn', 'ggnn', 'mean', 'transformer', 'cnn',
'transformer_lm'],
help="Type of encoder layer to use. Non-RNN layers "
"are experimental. Options are "
"[rnn|brnn|ggnn|mean|transformer|cnn|transformer_lm].")
group.add('--decoder_type', '-decoder_type', type=str, default='rnn',
choices=['rnn', 'transformer', 'cnn', 'transformer_lm'],
help="Type of decoder layer to use. Non-RNN layers "
"are experimental. Options are "
"[rnn|transformer|cnn|transformer].")
group.add('--layers', '-layers', type=int, default=-1,
help='Number of layers in enc/dec.')
group.add('--enc_layers', '-enc_layers', type=int, default=2,
help='Number of layers in the encoder')
group.add('--dec_layers', '-dec_layers', type=int, default=2,
help='Number of layers in the decoder')
group.add('--rnn_size', '-rnn_size', type=int, default=-1,
help="Size of rnn hidden states. Overwrites "
"enc_rnn_size and dec_rnn_size")
group.add('--enc_rnn_size', '-enc_rnn_size', type=int, default=500,
help="Size of encoder rnn hidden states.")
group.add('--dec_rnn_size', '-dec_rnn_size', type=int, default=500,
help="Size of decoder rnn hidden states.")
group.add('--cnn_kernel_width', '-cnn_kernel_width', type=int, default=3,
help="Size of windows in the cnn, the kernel_size is "
"(cnn_kernel_width, 1) in conv layer")
group.add('--pos_ffn_activation_fn', '-pos_ffn_activation_fn',
type=str, default=ActivationFunction.relu,
choices=ACTIVATION_FUNCTIONS.keys(), help='The activation'
' function to use in PositionwiseFeedForward layer. Choices are'
f' {ACTIVATION_FUNCTIONS.keys()}. Default to'
f' {ActivationFunction.relu}.')
group.add('--input_feed', '-input_feed', type=int, default=1,
help="Feed the context vector at each time step as "
"additional input (via concatenation with the word "
"embeddings) to the decoder.")
group.add('--bridge', '-bridge', action="store_true",
help="Have an additional layer between the last encoder "
"state and the first decoder state")
group.add('--rnn_type', '-rnn_type', type=str, default='LSTM',
choices=['LSTM', 'GRU', 'SRU'],
action=CheckSRU,
help="The gate type to use in the RNNs")
# group.add('--residual', '-residual', action="store_true",
# help="Add residual connections between RNN layers.")
group.add('--brnn', '-brnn', action=DeprecateAction,
help="Deprecated, use `encoder_type`.")
group.add('--context_gate', '-context_gate', type=str, default=None,
choices=['source', 'target', 'both'],
help="Type of context gate to use. "
"Do not select for no context gate.")
# The following options (bridge_extra_node to n_steps) are used
# for training with --encoder_type ggnn (Gated Graph Neural Network).
group.add('--bridge_extra_node', '-bridge_extra_node',
type=bool, default=True,
help='Graph encoder bridges only extra node to decoder as input')
group.add('--bidir_edges', '-bidir_edges', type=bool, default=True,
help='Graph encoder autogenerates bidirectional edges')
group.add('--state_dim', '-state_dim', type=int, default=512,
help='Number of state dimensions in the graph encoder')
group.add('--n_edge_types', '-n_edge_types', type=int, default=2,
help='Number of edge types in the graph encoder')
group.add('--n_node', '-n_node', type=int, default=2,
help='Number of nodes in the graph encoder')
group.add('--n_steps', '-n_steps', type=int, default=2,
help='Number of steps to advance graph encoder')
group.add('--src_ggnn_size', '-src_ggnn_size', type=int, default=0,
help='Vocab size plus feature space for embedding input')
# Attention options
group = parser.add_argument_group('Model- Attention')
group.add('--global_attention', '-global_attention',
type=str, default='general',
choices=['dot', 'general', 'mlp', 'none'],
help="The attention type to use: "
"dotprod or general (Luong) or MLP (Bahdanau)")
group.add('--global_attention_function', '-global_attention_function',
type=str, default="softmax", choices=["softmax", "sparsemax"])
group.add('--self_attn_type', '-self_attn_type',
type=str, default="scaled-dot",
help='Self attention type in Transformer decoder '
'layer -- currently "scaled-dot" or "average" ')
group.add('--max_relative_positions', '-max_relative_positions',
type=int, default=0,
help="Maximum distance between inputs in relative "
"positions representations. "
"For more detailed information, see: "
"https://arxiv.org/pdf/1803.02155.pdf")
group.add('--heads', '-heads', type=int, default=8,
help='Number of heads for transformer self-attention')
group.add('--transformer_ff', '-transformer_ff', type=int, default=2048,
help='Size of hidden transformer feed-forward')
group.add('--aan_useffn', '-aan_useffn', action="store_true",
help='Turn on the FFN layer in the AAN decoder')
# Alignement options
group = parser.add_argument_group('Model - Alignement')
group.add('--lambda_align', '-lambda_align', type=float, default=0.0,
help="Lambda value for alignement loss of Garg et al (2019)"
"For more detailed information, see: "
"https://arxiv.org/abs/1909.02074")
group.add('--alignment_layer', '-alignment_layer', type=int, default=-3,
help='Layer number which has to be supervised.')
group.add('--alignment_heads', '-alignment_heads', type=int, default=0,
help='N. of cross attention heads per layer to supervised with')
group.add('--full_context_alignment', '-full_context_alignment',
action="store_true",
help='Whether alignment is conditioned on full target context.')
# Generator and loss options.
group = parser.add_argument_group('Generator')
group.add('--copy_attn', '-copy_attn', action="store_true",
help='Train copy attention layer.')
group.add('--copy_attn_type', '-copy_attn_type',
type=str, default=None,
choices=['dot', 'general', 'mlp', 'none'],
help="The copy attention type to use. Leave as None to use "
"the same as -global_attention.")
group.add('--generator_function', '-generator_function', default="softmax",
choices=["softmax", "sparsemax"],
help="Which function to use for generating "
"probabilities over the target vocabulary (choices: "
"softmax, sparsemax)")
group.add('--copy_attn_force', '-copy_attn_force', action="store_true",
help='When available, train to copy.')
group.add('--reuse_copy_attn', '-reuse_copy_attn', action="store_true",
help="Reuse standard attention for copy")
group.add('--copy_loss_by_seqlength', '-copy_loss_by_seqlength',
action="store_true",
help="Divide copy loss by length of sequence")
group.add('--coverage_attn', '-coverage_attn', action="store_true",
help='Train a coverage attention layer.')
group.add('--lambda_coverage', '-lambda_coverage', type=float, default=0.0,
help='Lambda value for coverage loss of See et al (2017)')
group.add('--loss_scale', '-loss_scale', type=float, default=0,
help="For FP16 training, the static loss scale to use. If not "
"set, the loss scale is dynamically computed.")
group.add('--apex_opt_level', '-apex_opt_level', type=str, default="O1",
choices=["O0", "O1", "O2", "O3"],
help="For FP16 training, the opt_level to use."
"See https://nvidia.github.io/apex/amp.html#opt-levels.")
def _add_train_general_opts(parser):
""" General options for training """
group = parser.add_argument_group('General')
group.add('--data_type', '-data_type', default="text",
help="Type of the source input. "
"Options are [text].")
group.add('--save_model', '-save_model', default='model',
help="Model filename (the model will be saved as "
"<save_model>_N.pt where N is the number "
"of steps")
group.add('--save_checkpoint_steps', '-save_checkpoint_steps',
type=int, default=5000,
help="""Save a checkpoint every X steps""")
group.add('--keep_checkpoint', '-keep_checkpoint', type=int, default=-1,
help="Keep X checkpoints (negative: keep all)")
# GPU
group.add('--gpuid', '-gpuid', default=[], nargs='*', type=int,
help="Deprecated see world_size and gpu_ranks.")
group.add('--gpu_ranks', '-gpu_ranks', default=[], nargs='*', type=int,
help="list of ranks of each process.")
group.add('--world_size', '-world_size', default=1, type=int,
help="total number of distributed processes.")
group.add('--gpu_backend', '-gpu_backend',
default="nccl", type=str,
help="Type of torch distributed backend")
group.add('--gpu_verbose_level', '-gpu_verbose_level', default=0, type=int,
help="Gives more info on each process per GPU.")
group.add('--master_ip', '-master_ip', default="localhost", type=str,
help="IP of master for torch.distributed training.")
group.add('--master_port', '-master_port', default=10000, type=int,
help="Port of master for torch.distributed training.")
group.add('--queue_size', '-queue_size', default=40, type=int,
help="Size of queue for each process in producer/consumer")
_add_reproducibility_opts(parser)
# Init options
group = parser.add_argument_group('Initialization')
group.add('--param_init', '-param_init', type=float, default=0.1,
help="Parameters are initialized over uniform distribution "
"with support (-param_init, param_init). "
"Use 0 to not use initialization")
group.add('--param_init_glorot', '-param_init_glorot', action='store_true',
help="Init parameters with xavier_uniform. "
"Required for transformer.")
group.add('--train_from', '-train_from', default='', type=str,
help="If training from a checkpoint then this is the "
"path to the pretrained model's state_dict.")
group.add('--reset_optim', '-reset_optim', default='none',
choices=['none', 'all', 'states', 'keep_states'],
help="Optimization resetter when train_from.")
# Pretrained word vectors
group.add('--pre_word_vecs_enc', '-pre_word_vecs_enc',
help="If a valid path is specified, then this will load "
"pretrained word embeddings on the encoder side. "
"See README for specific formatting instructions.")
group.add('--pre_word_vecs_dec', '-pre_word_vecs_dec',
help="If a valid path is specified, then this will load "
"pretrained word embeddings on the decoder side. "
"See README for specific formatting instructions.")
# Freeze word vectors
group.add('--freeze_word_vecs_enc', '-freeze_word_vecs_enc',
action='store_true',
help="Freeze word embeddings on the encoder side.")
group.add('--freeze_word_vecs_dec', '-freeze_word_vecs_dec',
action='store_true',
help="Freeze word embeddings on the decoder side.")
# Optimization options
group = parser.add_argument_group('Optimization- Type')
group.add('--batch_size', '-batch_size', type=int, default=64,
help='Maximum batch size for training')
group.add('--batch_size_multiple', '-batch_size_multiple',
type=int, default=None,
help='Batch size multiple for token batches.')
group.add('--batch_type', '-batch_type', default='sents',
choices=["sents", "tokens"],
help="Batch grouping for batch_size. Standard "
"is sents. Tokens will do dynamic batching")
group.add('--pool_factor', '-pool_factor', type=int, default=8192,
help="""Factor used in data loading and batch creations.
It will load the equivalent of `pool_factor` batches,
sort them by the according `sort_key` to produce
homogeneous batches and reduce padding, and yield
the produced batches in a shuffled way.
Inspired by torchtext's pool mechanism.""")
group.add('--normalization', '-normalization', default='sents',
choices=["sents", "tokens"],
help='Normalization method of the gradient.')
group.add('--accum_count', '-accum_count', type=int, nargs='+',
default=[1],
help="Accumulate gradient this many times. "
"Approximately equivalent to updating "
"batch_size * accum_count batches at once. "
"Recommended for Transformer.")
group.add('--accum_steps', '-accum_steps', type=int, nargs='+',
default=[0], help="Steps at which accum_count values change")
group.add('--valid_steps', '-valid_steps', type=int, default=10000,
help='Perfom validation every X steps')
group.add('--valid_batch_size', '-valid_batch_size', type=int, default=32,
help='Maximum batch size for validation')
group.add('--max_generator_batches', '-max_generator_batches',
type=int, default=32,
help="Maximum batches of words in a sequence to run "
"the generator on in parallel. Higher is faster, but "
"uses more memory. Set to 0 to disable.")
group.add('--train_steps', '-train_steps', type=int, default=100000,
help='Number of training steps')
group.add('--single_pass', '-single_pass', action='store_true',
help="Make a single pass over the training dataset.")
group.add('--epochs', '-epochs', type=int, default=0,
help='Deprecated epochs see train_steps')
group.add('--early_stopping', '-early_stopping', type=int, default=0,
help='Number of validation steps without improving.')
group.add('--early_stopping_criteria', '-early_stopping_criteria',
nargs="*", default=None,
help='Criteria to use for early stopping.')
group.add('--optim', '-optim', default='sgd',
choices=['sgd', 'adagrad', 'adadelta', 'adam',
'sparseadam', 'adafactor', 'fusedadam'],
help="Optimization method.")
group.add('--adagrad_accumulator_init', '-adagrad_accumulator_init',
type=float, default=0,
help="Initializes the accumulator values in adagrad. "
"Mirrors the initial_accumulator_value option "
"in the tensorflow adagrad (use 0.1 for their default).")
group.add('--max_grad_norm', '-max_grad_norm', type=float, default=5,
help="If the norm of the gradient vector exceeds this, "
"renormalize it to have the norm equal to "
"max_grad_norm")
group.add('--dropout', '-dropout', type=float, default=[0.3], nargs='+',
help="Dropout probability; applied in LSTM stacks.")
group.add('--attention_dropout', '-attention_dropout', type=float,
default=[0.1], nargs='+',
help="Attention Dropout probability.")
group.add('--dropout_steps', '-dropout_steps', type=int, nargs='+',
default=[0], help="Steps at which dropout changes.")
group.add('--truncated_decoder', '-truncated_decoder', type=int, default=0,
help="""Truncated bptt.""")
group.add('--adam_beta1', '-adam_beta1', type=float, default=0.9,
help="The beta1 parameter used by Adam. "
"Almost without exception a value of 0.9 is used in "
"the literature, seemingly giving good results, "
"so we would discourage changing this value from "
"the default without due consideration.")
group.add('--adam_beta2', '-adam_beta2', type=float, default=0.999,
help='The beta2 parameter used by Adam. '
'Typically a value of 0.999 is recommended, as this is '
'the value suggested by the original paper describing '
'Adam, and is also the value adopted in other frameworks '
'such as Tensorflow and Keras, i.e. see: '
'https://www.tensorflow.org/api_docs/python/tf/train/Adam'
'Optimizer or https://keras.io/optimizers/ . '
'Whereas recently the paper "Attention is All You Need" '
'suggested a value of 0.98 for beta2, this parameter may '
'not work well for normal models / default '
'baselines.')
group.add('--label_smoothing', '-label_smoothing', type=float, default=0.0,
help="Label smoothing value epsilon. "
"Probabilities of all non-true labels "
"will be smoothed by epsilon / (vocab_size - 1). "
"Set to zero to turn off label smoothing. "
"For more detailed information, see: "
"https://arxiv.org/abs/1512.00567")
group.add('--average_decay', '-average_decay', type=float, default=0,
help="Moving average decay. "
"Set to other than 0 (e.g. 1e-4) to activate. "
"Similar to Marian NMT implementation: "
"http://www.aclweb.org/anthology/P18-4020 "
"For more detail on Exponential Moving Average: "
"https://en.wikipedia.org/wiki/Moving_average")
group.add('--average_every', '-average_every', type=int, default=1,
help="Step for moving average. "
"Default is every update, "
"if -average_decay is set.")
# learning rate
group = parser.add_argument_group('Optimization- Rate')
group.add('--learning_rate', '-learning_rate', type=float, default=1.0,
help="Starting learning rate. "
"Recommended settings: sgd = 1, adagrad = 0.1, "
"adadelta = 1, adam = 0.001")
group.add('--learning_rate_decay', '-learning_rate_decay',
type=float, default=0.5,
help="If update_learning_rate, decay learning rate by "
"this much if steps have gone past "
"start_decay_steps")
group.add('--start_decay_steps', '-start_decay_steps',
type=int, default=50000,
help="Start decaying every decay_steps after "
"start_decay_steps")
group.add('--decay_steps', '-decay_steps', type=int, default=10000,
help="Decay every decay_steps")
group.add('--decay_method', '-decay_method', type=str, default="none",
choices=['noam', 'noamwd', 'rsqrt', 'none'],
help="Use a custom decay rate.")
group.add('--warmup_steps', '-warmup_steps', type=int, default=4000,
help="Number of warmup steps for custom decay.")
_add_logging_opts(parser, is_train=True)
def _add_train_dynamic_data(parser):
group = parser.add_argument_group("Dynamic data")
group.add("-bucket_size", "--bucket_size", type=int, default=2048,
help="Examples per dynamically generated torchtext Dataset.")
def train_opts(parser):
"""All options used in train."""
# options relate to data preprare
dynamic_prepare_opts(parser, build_vocab_only=False)
# options relate to train
model_opts(parser)
_add_train_general_opts(parser)
_add_train_dynamic_data(parser)
def _add_decoding_opts(parser):
group = parser.add_argument_group('Beam Search')
beam_size = group.add('--beam_size', '-beam_size', type=int, default=5,
help='Beam size')
group.add('--ratio', '-ratio', type=float, default=-0.,
help="Ratio based beam stop condition")
group = parser.add_argument_group('Random Sampling')
group.add('--random_sampling_topk', '-random_sampling_topk',
default=0, type=int,
help="Set this to -1 to do random sampling from full "
"distribution. Set this to value k>1 to do random "
"sampling restricted to the k most likely next tokens. "
"Set this to 1 to use argmax.")
group.add('--random_sampling_topp', '-random_sampling_topp',
default=0.0, type=float,
help="Probability for top-p/nucleus sampling. Restrict tokens"
" to the most likely until the cumulated probability is"
" over p. In range [0, 1]."
" https://arxiv.org/abs/1904.09751")
group.add('--random_sampling_temp', '-random_sampling_temp',
default=1., type=float,
help="If doing random sampling, divide the logits by "
"this before computing softmax during decoding.")
group._group_actions.append(beam_size)
_add_reproducibility_opts(parser)
group = parser.add_argument_group(
'Penalties',
'.. Note:: Coverage Penalty is not available in sampling.')
# Alpha and Beta values for Google Length + Coverage penalty
# Described here: https://arxiv.org/pdf/1609.08144.pdf, Section 7
# Length penalty options
group.add('--length_penalty', '-length_penalty', default='none',
choices=['none', 'wu', 'avg'],
help="Length Penalty to use.")
group.add('--alpha', '-alpha', type=float, default=0.,
help="Google NMT length penalty parameter "
"(higher = longer generation)")
# Coverage penalty options
group.add('--coverage_penalty', '-coverage_penalty', default='none',
choices=['none', 'wu', 'summary'],
help="Coverage Penalty to use. Only available in beam search.")
group.add('--beta', '-beta', type=float, default=-0.,
help="Coverage penalty parameter")
group.add('--stepwise_penalty', '-stepwise_penalty', action='store_true',
help="Apply coverage penalty at every decoding step. "
"Helpful for summary penalty.")
group = parser.add_argument_group(
'Decoding tricks',
'.. Tip:: Following options can be used to limit the decoding length '
'or content.'
)
# Decoding Length constraint
group.add('--min_length', '-min_length', type=int, default=0,
help='Minimum prediction length')
group.add('--max_length', '-max_length', type=int, default=100,
help='Maximum prediction length.')
group.add('--max_sent_length', '-max_sent_length', action=DeprecateAction,
help="Deprecated, use `-max_length` instead")
# Decoding content constraint
group.add('--block_ngram_repeat', '-block_ngram_repeat',
type=int, default=0,
help='Block repetition of ngrams during decoding.')
group.add('--ignore_when_blocking', '-ignore_when_blocking',
nargs='+', type=str, default=[],
help="Ignore these strings when blocking repeats. "
"You want to block sentence delimiters.")
group.add('--replace_unk', '-replace_unk', action="store_true",
help="Replace the generated UNK tokens with the "
"source token that had highest attention weight. If "
"phrase_table is provided, it will look up the "
"identified source token and give the corresponding "
"target token. If it is not provided (or the identified "
"source token does not exist in the table), then it "
"will copy the source token.")
group.add('--ban_unk_token', '-ban_unk_token',
action="store_true",
help="Prevent unk token generation by setting unk proba to 0")
group.add('--phrase_table', '-phrase_table', type=str, default="",
help="If phrase_table is provided (with replace_unk), it will "
"look up the identified source token and give the "
"corresponding target token. If it is not provided "
"(or the identified source token does not exist in "
"the table), then it will copy the source token.")
def translate_opts(parser, dynamic=False):
""" Translation / inference options """
group = parser.add_argument_group('Model')
group.add('--model', '-model', dest='models', metavar='MODEL',
nargs='+', type=str, default=[], required=True,
help="Path to model .pt file(s). "
"Multiple models can be specified, "
"for ensemble decoding.")
group.add('--fp32', '-fp32', action='store_true',
help="Force the model to be in FP32 "
"because FP16 is very slow on GTX1080(ti).")
group.add('--int8', '-int8', action='store_true',
help="Enable dynamic 8-bit quantization (CPU only).")
group.add('--avg_raw_probs', '-avg_raw_probs', action='store_true',
help="If this is set, during ensembling scores from "
"different models will be combined by averaging their "
"raw probabilities and then taking the log. Otherwise, "
"the log probabilities will be averaged directly. "
"Necessary for models whose output layers can assign "
"zero probability.")
group = parser.add_argument_group('Data')
group.add('--data_type', '-data_type', default="text",
help="Type of the source input. Options: [text].")
group.add('--src', '-src', required=True,
help="Source sequence to decode (one line per "
"sequence)")
group.add("-src_feats", "--src_feats", required=False,
help="Source sequence features (dict format). "
"Ex: {'feat_0': '../data.txt.feats0', 'feat_1': '../data.txt.feats1'}") # noqa: E501
group.add('--tgt', '-tgt',
help='True target sequence (optional)')
group.add('--tgt_prefix', '-tgt_prefix', action='store_true',
help='Generate predictions using provided `-tgt` as prefix.')
group.add('--shard_size', '-shard_size', type=int, default=10000,
help="Divide src and tgt (if applicable) into "
"smaller multiple src and tgt files, then "
"build shards, each shard will have "
"opt.shard_size samples except last shard. "
"shard_size=0 means no segmentation "
"shard_size>0 means segment dataset into multiple shards, "
"each shard has shard_size samples")
group.add('--output', '-output', default='pred.txt',
help="Path to output the predictions (each line will "
"be the decoded sequence")
group.add('--report_align', '-report_align', action='store_true',
help="Report alignment for each translation.")
group.add('--report_time', '-report_time', action='store_true',
help="Report some translation time metrics")
# Adding options relate to decoding strategy
_add_decoding_opts(parser)
# Adding option for logging
_add_logging_opts(parser, is_train=False)
group = parser.add_argument_group('Efficiency')
group.add('--batch_size', '-batch_size', type=int, default=30,
help='Batch size')
group.add('--batch_type', '-batch_type', default='sents',
choices=["sents", "tokens"],
help="Batch grouping for batch_size. Standard "
"is sents. Tokens will do dynamic batching")
group.add('--gpu', '-gpu', type=int, default=-1,
help="Device to run on")
if dynamic:
group.add("-transforms", "--transforms", default=[], nargs="+",
choices=AVAILABLE_TRANSFORMS.keys(),
help="Default transform pipeline to apply to data.")
# Adding options related to Transforms
_add_dynamic_transform_opts(parser)
# Copyright 2016 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
class StoreLoggingLevelAction(configargparse.Action):
""" Convert string to logging level """
import logging
LEVELS = {
"CRITICAL": logging.CRITICAL,
"ERROR": logging.ERROR,
"WARNING": logging.WARNING,
"INFO": logging.INFO,
"DEBUG": logging.DEBUG,
"NOTSET": logging.NOTSET
}
CHOICES = list(LEVELS.keys()) + [str(_) for _ in LEVELS.values()]
def __init__(self, option_strings, dest, help=None, **kwargs):
super(StoreLoggingLevelAction, self).__init__(
option_strings, dest, help=help, **kwargs)
def __call__(self, parser, namespace, value, option_string=None):
# Get the key 'value' in the dict, or just use 'value'
level = StoreLoggingLevelAction.LEVELS.get(value, value)
setattr(namespace, self.dest, level)
class DeprecateAction(configargparse.Action):
""" Deprecate action """
def __init__(self, option_strings, dest, help=None, **kwargs):
super(DeprecateAction, self).__init__(option_strings, dest, nargs=0,
help=help, **kwargs)
def __call__(self, parser, namespace, values, flag_name):
help = self.help if self.help is not None else ""
msg = "Flag '%s' is deprecated. %s" % (flag_name, help)
raise configargparse.ArgumentTypeError(msg)
|