File size: 8,503 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#!/bin/bash
### Utility to test models by using command lines actions to run
### Actions are typically model training / translation
### or options setter.
###
### Actions are executed in the order its provided, therefore setters must
### be first
###  
### Example: 
###     - Run all tests: 
###             ./test_models.sh all
###             or
###             ./test_models.sh
###
###     - Run all tests using GPU (i.e. -gpuid 0):
###             ./test_models.sh set_gpu all
###             (note that set_gpu comes first!!!)
###             you can set all GPU (i.e. to match CUDA_VISIBLE_DEVICES)!
###             ./test_models.sh set_all_gpu all
###  
###     - Train each models, and run translation (for each!):
###             ./test_models.sh translate_each all
###             (note that translate_each comes first!!!)
###     
###     - Train and translate a specific model (e.g. lstm):
###             ./test_models.sh lstm translate
###             note that translate only consider the last model therefore:
###             ./test_models.sh lstm cnn translate
###             would actually use CNN model for translation
###  
###     - Run in debug mode (stops on first error) 
###             ./test_models set_debug all 
###  


PYTHON_BIN=python


MODEL_DIR="/tmp"
MODEL_NAME="onmt_tmp_model"
MODEL_PATH="$MODEL_DIR/$MODEL_NAME"
MODEL_FILES_PREFIX="${MODEL_NAME}_acc_"

TEST_DIR="./onmt/tests"
TEST_MODEL_NAME="test_model.pt"
TEST_MODEL_PATH="$TEST_DIR/$TEST_MODEL_NAME"

DATA_DIR="./data"
DATA_PATH="$DATA_DIR/data"


# Do not edit directly, use calls 'set_gpu' and 'translate_each'
GPUID=-1
TRANSLATE_EACH=0

### Some setters
###############################################
set_gpu(){
    GPUID=0
}


set_all_gpu(){
    GPUID=$(sed 's/,/ /g' <(echo $CUDA_VISIBLE_DEVICES) >&1)
}
print_gpuid(){
    echo "$GPUID"
}

set_debug(){
    set -e
}

translate_each(){
    TRANSLATE_EACH=1
}
### Some utils functions
###############################################
mv_best_checkpoint(){
    best_model="$(ls -lsrt $MODEL_DIR | grep "${MODEL_FILES_PREFIX}*" | tail -n 1 | awk '{print $NF}')"
    mv "$MODEL_DIR/$best_model" "$TEST_MODEL_PATH"
}

rm_tmp_checkpoints(){
    rm -f "$MODEL_DIR/${MODEL_FILES_PREFIX}"*
}


### RNNLM
###############################################
lstm(){
    rm -f "$DATA_DIR"/*.pt
    $PYTHON_BIN preprocess.py -train_src "$DATA_DIR"/src-train.txt \
                         -train_tgt "$DATA_DIR"/tgt-train.txt \
                         -valid_src "$DATA_DIR"/src-val.txt \
                         -valid_tgt "$DATA_DIR"/tgt-val.txt \
                         -save_data "$DATA_PATH" \
                         -src_vocab_size 1000 \
                         -tgt_vocab_size 1000

    $PYTHON_BIN train.py -data "$DATA_PATH" \
                    -save_model "$MODEL_PATH" \
                    -gpuid $GPUID \
                    -rnn_size 512 \
                    -word_vec_size 512 \
                    -layers 1 \
                    -train_steps 10000 \
                    -optim adam  \
                    -learning_rate 0.001 \
                    -rnn_type LSTM
    mv_best_checkpoint
    maybe_translate
    rm_tmp_checkpoints
}



### SRU
###############################################
sru(){
    rm -f "$DATA_DIR"/*.pt
    $PYTHON_BIN preprocess.py -train_src "$DATA_DIR"/src-train.txt \
                         -train_tgt "$DATA_DIR"/tgt-train.txt \
                         -valid_src "$DATA_DIR"/src-val.txt \
                         -valid_tgt "$DATA_DIR"/tgt-val.txt \
                         -save_data "$DATA_PATH" \
                         -src_vocab_size 1000 \
                         -tgt_vocab_size 1000 \
                         -rnn_type "SRU" \
                         -input_feed 0

    $PYTHON_BIN train.py -data "$DATA_PATH" \
                    -save_model "$MODEL_PATH" \
                    -gpuid $GPUID \
                    -rnn_size 512 \
                    -word_vec_size 512 \
                    -layers 1 \
                    -train_steps 10000 \
                    -optim adam  \
                    -learning_rate 0.001 \
                    -rnn_type LSTM
    mv_best_checkpoint
    maybe_translate
    rm_tmp_checkpoints
}
### CNN
###############################################
cnn(){
    rm -f "$DATA_DIR"/*.pt
    $PYTHON_BIN preprocess.py -train_src "$DATA_DIR"/src-train.txt\
                         -train_tgt "$DATA_DIR"/tgt-train.txt \
                         -valid_src "$DATA_DIR"/src-val.txt \
                         -valid_tgt "$DATA_DIR"/tgt-val.txt \
                         -save_data "$DATA_PATH" \
                         -src_vocab_size 1000 \
                         -tgt_vocab_size 1000 
    
    $PYTHON_BIN train.py -data "$DATA_PATH" \
                    -save_model "$MODEL_PATH" \
                    -gpuid $GPUID \
                    -rnn_size 256 \
                    -word_vec_size 256 \
                    -layers 2 \
                    -train_steps 10000 \
                    -optim adam  \
                    -learning_rate 0.001 \
                    -encoder_type cnn \
                    -decoder_type cnn
    mv_best_checkpoint
    maybe_translate
    rm_tmp_checkpoints
}


### MORPH DATA
###############################################
morph(){
    ################# MORPH DATA
    rm -f "$DATA_DIR"/morph/*.pt
    $PYTHON_BIN preprocess.py -train_src "$DATA_DIR"/morph/src.train \
                         -train_tgt "$DATA_DIR"/morph/tgt.train \
                         -valid_src "$DATA_DIR"/morph/src.valid \
                         -valid_tgt "$DATA_DIR"/morph/tgt.valid \
                         -save_data "$DATA_DIR"/morph/data 

    $PYTHON_BIN train.py -data "$DATA_DIR"/morph/data \
                    -save_model "$MODEL_PATH" \
                    -gpuid $GPUID \
                    -rnn_size 400 \
                    -word_vec_size 100 \
                    -layers 1 \
                    -train_steps 10000 \
                    -optim adam  \
                    -learning_rate 0.001

    mv_best_checkpoint
    maybe_translate
    rm_tmp_checkpoints
}


### TRANSFORMER
###############################################
transformer(){
    rm -f "$DATA_DIR"/*.pt
    $PYTHON_BIN preprocess.py -train_src "$DATA_DIR"/src-train.txt \
                         -train_tgt "$DATA_DIR"/tgt-train.txt \
                         -valid_src "$DATA_DIR"/src-val.txt \
                         -valid_tgt "$DATA_DIR"/tgt-val.txt \
                         -save_data "$DATA_PATH" \
                         -src_vocab_size 1000 \
                         -tgt_vocab_size 1000 \
                         -share_vocab


    $PYTHON_BIN train.py -data "$DATA_PATH" \
                    -save_model "$MODEL_PATH" \
                    -share_embedding \
                    -batch_type tokens \
                    -batch_size 1024 \
                    -accum_count 4 \
                    -layers 1 \
                    -rnn_size 256 \
                    -word_vec_size 256 \
                    -encoder_type transformer \
                    -decoder_type transformer \
                    -train_steps 10000 \
                    -gpuid $GPUID \
                    -max_generator_batches 4 \
                    -dropout 0.1 \
                    -normalization tokens \
                    -max_grad_norm 0 \
                    -optim adam \
                    -decay_method noam \
                    -learning_rate 2 \
                    -position_encoding \
                    -param_init 0 \
                    -warmup_steps 100 \
                    -param_init_glorot \
                    -adam_beta2 0.998

    mv_best_checkpoint
    maybe_translate
    rm_tmp_checkpoints

}


### TRANSLATION
###############################################
translate(){
    $PYTHON_BIN translate.py -gpu "$GPUID" \
                        -model "$TEST_MODEL_PATH" \
                        -output "$TEST_DIR"/output_hyp.txt \
                        -beam 5 \
                        -batch_size 32 \
                        -src "$DATA_DIR"/src-val.txt
}

maybe_translate(){
    if [ $TRANSLATE_EACH -eq 1 ]
    then
        translate
    fi
}

all(){
    lstm
    sru
    cnn
    morph
    transformer
    translate

}

actions="$@"

# set the default action
if [ -z "$1" ]; then
    actions="all"
fi

# Process actions (in order)
for action in $actions; do
    echo "Running: $action"
    eval "$action"
done

echo "Done."