File size: 19,164 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
"""
This is the loadable seq2seq trainer library that is
in charge of training details, loss compute, and statistics.
See train.py for a use case of this library.
Note: To make this a general library, we implement *only*
mechanism things here(i.e. what to do), and leave the strategy
things to users(i.e. how to do it). Also see train.py(one of the
users of this library) for the strategy things we do.
"""
import torch
import traceback
import onmt.utils
from onmt.utils.logging import logger
def build_trainer(opt, device_id, model, fields, optim, model_saver=None):
"""
Simplify `Trainer` creation based on user `opt`s*
Args:
opt (:obj:`Namespace`): user options (usually from argument parsing)
model (:obj:`onmt.models.NMTModel`): the model to train
fields (dict): dict of fields
optim (:obj:`onmt.utils.Optimizer`): optimizer used during training
data_type (str): string describing the type of data
e.g. "text"
model_saver(:obj:`onmt.models.ModelSaverBase`): the utility object
used to save the model
"""
tgt_field = dict(fields)["tgt"].base_field
train_loss = onmt.utils.loss.build_loss_compute(model, tgt_field, opt)
valid_loss = onmt.utils.loss.build_loss_compute(
model, tgt_field, opt, train=False)
trunc_size = opt.truncated_decoder # Badly named...
shard_size = opt.max_generator_batches if opt.model_dtype == 'fp32' else 0
norm_method = opt.normalization
accum_count = opt.accum_count
accum_steps = opt.accum_steps
n_gpu = opt.world_size
average_decay = opt.average_decay
average_every = opt.average_every
dropout = opt.dropout
dropout_steps = opt.dropout_steps
if device_id >= 0:
gpu_rank = opt.gpu_ranks[device_id]
else:
gpu_rank = -1
n_gpu = 0
gpu_verbose_level = opt.gpu_verbose_level
earlystopper = onmt.utils.EarlyStopping(
opt.early_stopping, scorers=onmt.utils.scorers_from_opts(opt)) \
if opt.early_stopping > 0 else None
report_manager = onmt.utils.build_report_manager(opt, gpu_rank)
trainer = onmt.Trainer(model, train_loss, valid_loss, optim, trunc_size,
shard_size, norm_method,
accum_count, accum_steps,
n_gpu, gpu_rank,
gpu_verbose_level, report_manager,
with_align=True if opt.lambda_align > 0 else False,
model_saver=model_saver if gpu_rank <= 0 else None,
average_decay=average_decay,
average_every=average_every,
model_dtype=opt.model_dtype,
earlystopper=earlystopper,
dropout=dropout,
dropout_steps=dropout_steps)
return trainer
class Trainer(object):
"""
Class that controls the training process.
Args:
model(:py:class:`onmt.models.model.NMTModel`): translation model
to train
train_loss(:obj:`onmt.utils.loss.LossComputeBase`):
training loss computation
valid_loss(:obj:`onmt.utils.loss.LossComputeBase`):
training loss computation
optim(:obj:`onmt.utils.optimizers.Optimizer`):
the optimizer responsible for update
trunc_size(int): length of truncated back propagation through time
shard_size(int): compute loss in shards of this size for efficiency
data_type(string): type of the source input: [text]
norm_method(string): normalization methods: [sents|tokens]
accum_count(list): accumulate gradients this many times.
accum_steps(list): steps for accum gradients changes.
report_manager(:obj:`onmt.utils.ReportMgrBase`):
the object that creates reports, or None
model_saver(:obj:`onmt.models.ModelSaverBase`): the saver is
used to save a checkpoint.
Thus nothing will be saved if this parameter is None
"""
def __init__(self, model, train_loss, valid_loss, optim,
trunc_size=0, shard_size=32,
norm_method="sents", accum_count=[1],
accum_steps=[0],
n_gpu=1, gpu_rank=1, gpu_verbose_level=0,
report_manager=None, with_align=False, model_saver=None,
average_decay=0, average_every=1, model_dtype='fp32',
earlystopper=None, dropout=[0.3], dropout_steps=[0]):
# Basic attributes.
self.model = model
self.train_loss = train_loss
self.valid_loss = valid_loss
self.optim = optim
self.trunc_size = trunc_size
self.shard_size = shard_size
self.norm_method = norm_method
self.accum_count_l = accum_count
self.accum_count = accum_count[0]
self.accum_steps = accum_steps
self.n_gpu = n_gpu
self.gpu_rank = gpu_rank
self.gpu_verbose_level = gpu_verbose_level
self.report_manager = report_manager
self.with_align = with_align
self.model_saver = model_saver
self.average_decay = average_decay
self.moving_average = None
self.average_every = average_every
self.model_dtype = model_dtype
self.earlystopper = earlystopper
self.dropout = dropout
self.dropout_steps = dropout_steps
for i in range(len(self.accum_count_l)):
assert self.accum_count_l[i] > 0
if self.accum_count_l[i] > 1:
assert self.trunc_size == 0, \
"""To enable accumulated gradients,
you must disable target sequence truncating."""
# Set model in training mode.
self.model.train()
def _accum_count(self, step):
for i in range(len(self.accum_steps)):
if step > self.accum_steps[i]:
_accum = self.accum_count_l[i]
return _accum
def _maybe_update_dropout(self, step):
for i in range(len(self.dropout_steps)):
if step > 1 and step == self.dropout_steps[i] + 1:
self.model.update_dropout(self.dropout[i])
logger.info("Updated dropout to %f from step %d"
% (self.dropout[i], step))
def _accum_batches(self, iterator):
batches = []
normalization = 0
self.accum_count = self._accum_count(self.optim.training_step)
for batch in iterator:
batches.append(batch)
if self.norm_method == "tokens":
num_tokens = batch.tgt[1:, :, 0].ne(
self.train_loss.padding_idx).sum()
normalization += num_tokens.item()
else:
normalization += batch.batch_size
if len(batches) == self.accum_count:
yield batches, normalization
self.accum_count = self._accum_count(self.optim.training_step)
batches = []
normalization = 0
if batches:
yield batches, normalization
def _update_average(self, step):
if self.moving_average is None:
copy_params = [params.detach().float()
for params in self.model.parameters()]
self.moving_average = copy_params
else:
average_decay = max(self.average_decay,
1 - (step + 1) / (step + 10))
for (i, avg), cpt in zip(enumerate(self.moving_average),
self.model.parameters()):
self.moving_average[i] = \
(1 - average_decay) * avg + \
cpt.detach().float() * average_decay
def train(self,
train_iter,
train_steps,
save_checkpoint_steps=5000,
valid_iter=None,
valid_steps=10000):
"""
The main training loop by iterating over `train_iter` and possibly
running validation on `valid_iter`.
Args:
train_iter: A generator that returns the next training batch.
train_steps: Run training for this many iterations.
save_checkpoint_steps: Save a checkpoint every this many
iterations.
valid_iter: A generator that returns the next validation batch.
valid_steps: Run evaluation every this many iterations.
Returns:
The gathered statistics.
"""
if valid_iter is None:
logger.info('Start training loop without validation...')
else:
logger.info('Start training loop and validate every %d steps...',
valid_steps)
total_stats = onmt.utils.Statistics()
report_stats = onmt.utils.Statistics()
self._start_report_manager(start_time=total_stats.start_time)
for i, (batches, normalization) in enumerate(
self._accum_batches(train_iter)):
step = self.optim.training_step
# UPDATE DROPOUT
self._maybe_update_dropout(step)
if self.gpu_verbose_level > 1:
logger.info("GpuRank %d: index: %d", self.gpu_rank, i)
if self.gpu_verbose_level > 0:
logger.info("GpuRank %d: reduce_counter: %d \
n_minibatch %d"
% (self.gpu_rank, i + 1, len(batches)))
if self.n_gpu > 1:
normalization = sum(onmt.utils.distributed
.all_gather_list
(normalization))
self._gradient_accumulation(
batches, normalization, total_stats,
report_stats)
if self.average_decay > 0 and i % self.average_every == 0:
self._update_average(step)
report_stats = self._maybe_report_training(
step, train_steps,
self.optim.learning_rate(),
report_stats)
if valid_iter is not None and step % valid_steps == 0:
if self.gpu_verbose_level > 0:
logger.info('GpuRank %d: validate step %d'
% (self.gpu_rank, step))
valid_stats = self.validate(
valid_iter, moving_average=self.moving_average)
if self.gpu_verbose_level > 0:
logger.info('GpuRank %d: gather valid stat \
step %d' % (self.gpu_rank, step))
valid_stats = self._maybe_gather_stats(valid_stats)
if self.gpu_verbose_level > 0:
logger.info('GpuRank %d: report stat step %d'
% (self.gpu_rank, step))
self._report_step(self.optim.learning_rate(),
step, valid_stats=valid_stats)
# Run patience mechanism
if self.earlystopper is not None:
self.earlystopper(valid_stats, step)
# If the patience has reached the limit, stop training
if self.earlystopper.has_stopped():
break
if (self.model_saver is not None
and (save_checkpoint_steps != 0
and step % save_checkpoint_steps == 0)):
self.model_saver.save(step, moving_average=self.moving_average)
if train_steps > 0 and step >= train_steps:
break
if self.model_saver is not None:
self.model_saver.save(step, moving_average=self.moving_average)
return total_stats
def validate(self, valid_iter, moving_average=None):
""" Validate model.
valid_iter: validate data iterator
Returns:
:obj:`nmt.Statistics`: validation loss statistics
"""
valid_model = self.model
if moving_average:
# swap model params w/ moving average
# (and keep the original parameters)
model_params_data = []
for avg, param in zip(self.moving_average,
valid_model.parameters()):
model_params_data.append(param.data)
param.data = avg.data.half() if self.optim._fp16 == "legacy" \
else avg.data
# Set model in validating mode.
valid_model.eval()
with torch.no_grad():
stats = onmt.utils.Statistics()
for batch in valid_iter:
src, src_lengths = batch.src if isinstance(batch.src, tuple) \
else (batch.src, None)
tgt = batch.tgt
with torch.cuda.amp.autocast(enabled=self.optim.amp):
# F-prop through the model.
outputs, attns = valid_model(src, tgt, src_lengths,
with_align=self.with_align)
# Compute loss.
_, batch_stats = self.valid_loss(batch, outputs, attns)
# Update statistics.
stats.update(batch_stats)
if moving_average:
for param_data, param in zip(model_params_data,
self.model.parameters()):
param.data = param_data
# Set model back to training mode.
valid_model.train()
return stats
def _gradient_accumulation(self, true_batches, normalization, total_stats,
report_stats):
if self.accum_count > 1:
self.optim.zero_grad()
for k, batch in enumerate(true_batches):
target_size = batch.tgt.size(0)
# Truncated BPTT: reminder not compatible with accum > 1
if self.trunc_size:
trunc_size = self.trunc_size
else:
trunc_size = target_size
src, src_lengths = batch.src if isinstance(batch.src, tuple) \
else (batch.src, None)
if src_lengths is not None:
report_stats.n_src_words += src_lengths.sum().item()
tgt_outer = batch.tgt
bptt = False
for j in range(0, target_size - 1, trunc_size):
# 1. Create truncated target.
tgt = tgt_outer[j: j + trunc_size]
# 2. F-prop all but generator.
if self.accum_count == 1:
self.optim.zero_grad()
with torch.cuda.amp.autocast(enabled=self.optim.amp):
outputs, attns = self.model(
src, tgt, src_lengths, bptt=bptt,
with_align=self.with_align)
bptt = True
# 3. Compute loss.
loss, batch_stats = self.train_loss(
batch,
outputs,
attns,
normalization=normalization,
shard_size=self.shard_size,
trunc_start=j,
trunc_size=trunc_size)
try:
if loss is not None:
self.optim.backward(loss)
total_stats.update(batch_stats)
report_stats.update(batch_stats)
except Exception:
traceback.print_exc()
logger.info("At step %d, we removed a batch - accum %d",
self.optim.training_step, k)
# 4. Update the parameters and statistics.
if self.accum_count == 1:
# Multi GPU gradient gather
if self.n_gpu > 1:
grads = [p.grad.data for p in self.model.parameters()
if p.requires_grad
and p.grad is not None]
onmt.utils.distributed.all_reduce_and_rescale_tensors(
grads, float(1))
self.optim.step()
# If truncated, don't backprop fully.
# TO CHECK
# if dec_state is not None:
# dec_state.detach()
if self.model.decoder.state is not None:
self.model.decoder.detach_state()
# in case of multi step gradient accumulation,
# update only after accum batches
if self.accum_count > 1:
if self.n_gpu > 1:
grads = [p.grad.data for p in self.model.parameters()
if p.requires_grad
and p.grad is not None]
onmt.utils.distributed.all_reduce_and_rescale_tensors(
grads, float(1))
self.optim.step()
def _start_report_manager(self, start_time=None):
"""
Simple function to start report manager (if any)
"""
if self.report_manager is not None:
if start_time is None:
self.report_manager.start()
else:
self.report_manager.start_time = start_time
def _maybe_gather_stats(self, stat):
"""
Gather statistics in multi-processes cases
Args:
stat(:obj:onmt.utils.Statistics): a Statistics object to gather
or None (it returns None in this case)
Returns:
stat: the updated (or unchanged) stat object
"""
if stat is not None and self.n_gpu > 1:
return onmt.utils.Statistics.all_gather_stats(stat)
return stat
def _maybe_report_training(self, step, num_steps, learning_rate,
report_stats):
"""
Simple function to report training stats (if report_manager is set)
see `onmt.utils.ReportManagerBase.report_training` for doc
"""
if self.report_manager is not None:
return self.report_manager.report_training(
step,
num_steps,
learning_rate,
None if self.earlystopper is None
else self.earlystopper.current_tolerance,
report_stats,
multigpu=self.n_gpu > 1)
def _report_step(self, learning_rate, step, train_stats=None,
valid_stats=None):
"""
Simple function to report stats (if report_manager is set)
see `onmt.utils.ReportManagerBase.report_step` for doc
"""
if self.report_manager is not None:
return self.report_manager.report_step(
learning_rate,
None if self.earlystopper is None
else self.earlystopper.current_tolerance,
step, train_stats=train_stats,
valid_stats=valid_stats)
|