File size: 4,253 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from onmt.utils.logging import logger
from onmt.transforms import register_transform
from .transform import Transform, ObservableStats


class FilterTooLongStats(ObservableStats):
    """Runing statistics for FilterTooLongTransform."""
    __slots__ = ["filtered"]

    def __init__(self):
        self.filtered = 1

    def update(self, other: "FilterTooLongStats"):
        self.filtered += other.filtered


@register_transform(name='filtertoolong')
class FilterTooLongTransform(Transform):
    """Filter out sentence that are too long."""

    def __init__(self, opts):
        super().__init__(opts)

    @classmethod
    def add_options(cls, parser):
        """Avalilable options relate to this Transform."""
        group = parser.add_argument_group("Transform/Filter")
        group.add("--src_seq_length", "-src_seq_length", type=int, default=200,
                  help="Maximum source sequence length.")
        group.add("--tgt_seq_length", "-tgt_seq_length", type=int, default=200,
                  help="Maximum target sequence length.")

    def _parse_opts(self):
        self.src_seq_length = self.opts.src_seq_length
        self.tgt_seq_length = self.opts.tgt_seq_length

    def apply(self, example, is_train=False, stats=None, **kwargs):
        """Return None if too long else return as is."""
        if (len(example['src']) > self.src_seq_length or
                len(example['tgt']) > self.tgt_seq_length):
            if stats is not None:
                stats.update(FilterTooLongStats())
            return None
        else:
            return example

    def _repr_args(self):
        """Return str represent key arguments for class."""
        return '{}={}, {}={}'.format(
            'src_seq_length', self.src_seq_length,
            'tgt_seq_length', self.tgt_seq_length
        )


@register_transform(name='prefix')
class PrefixTransform(Transform):
    """Add Prefix to src (& tgt) sentence."""

    def __init__(self, opts):
        super().__init__(opts)

    @staticmethod
    def _get_prefix(corpus):
        """Get prefix string of a `corpus`."""
        if 'prefix' in corpus['transforms']:
            prefix = {
                'src': corpus['src_prefix'],
                'tgt': corpus['tgt_prefix']
            }
        else:
            prefix = None
        return prefix

    @classmethod
    def get_prefix_dict(cls, opts):
        """Get all needed prefix correspond to corpus in `opts`."""
        prefix_dict = {}
        for c_name, corpus in opts.data.items():
            prefix = cls._get_prefix(corpus)
            if prefix is not None:
                logger.info(f"Get prefix for {c_name}: {prefix}")
                prefix_dict[c_name] = prefix
        return prefix_dict

    @classmethod
    def get_specials(cls, opts):
        """Get special vocabs added by prefix transform."""
        prefix_dict = cls.get_prefix_dict(opts)
        src_specials, tgt_specials = set(), set()
        for _, prefix in prefix_dict.items():
            src_specials.update(prefix['src'].split())
            tgt_specials.update(prefix['tgt'].split())
        return (src_specials, tgt_specials)

    def warm_up(self, vocabs=None):
        """Warm up to get prefix dictionary."""
        super().warm_up(None)
        self.prefix_dict = self.get_prefix_dict(self.opts)

    def _prepend(self, example, prefix):
        """Prepend `prefix` to `tokens`."""
        for side, side_prefix in prefix.items():
            example[side] = side_prefix.split() + example[side]
        return example

    def apply(self, example, is_train=False, stats=None, **kwargs):
        """Apply prefix prepend to example.

        Should provide `corpus_name` to get correspond prefix.
        """
        corpus_name = kwargs.get('corpus_name', None)
        if corpus_name is None:
            raise ValueError('corpus_name is required.')
        corpus_prefix = self.prefix_dict.get(corpus_name, None)
        if corpus_prefix is None:
            raise ValueError(f'prefix for {corpus_name} does not exist.')
        return self._prepend(example, corpus_prefix)

    def _repr_args(self):
        """Return str represent key arguments for class."""
        return '{}={}'.format('prefix_dict', self.prefix_dict)