File size: 8,086 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
"""Transforms relate to hamming distance sampling."""
import random
import numpy as np
from onmt.constants import DefaultTokens
from onmt.transforms import register_transform
from .transform import Transform, ObservableStats


class HammingDistanceSampling(object):
    """Functions related to (negative) Hamming Distance Sampling."""

    def _softmax(self, x):
        softmax = np.exp(x)/sum(np.exp(x))
        return softmax

    def _sample_replace(self, vocab, reject):
        """Sample a token from `vocab` other than `reject`."""
        token = reject
        while token == reject:
            token = random.choice(vocab)
        return token

    def _sample_distance(self, tokens, temperature):
        """Sample number of tokens to corrupt from `tokens`."""
        n_tokens = len(tokens)
        indices = np.arange(n_tokens)
        logits = indices * -1 * temperature
        probs = self._softmax(logits)
        distance = np.random.choice(indices, p=probs)
        return distance

    def _sample_position(self, tokens, distance):
        n_tokens = len(tokens)
        chosen_indices = random.sample(range(n_tokens), k=distance)
        return chosen_indices


class HammingDistanceSamplingTransform(Transform, HammingDistanceSampling):
    """Abstract Transform class based on HammingDistanceSampling."""

    def _set_seed(self, seed):
        """set seed to ensure reproducibility."""
        np.random.seed(seed)
        random.seed(seed)


class SwitchOutStats(ObservableStats):
    """Runing statistics for counting tokens being switched out."""

    __slots__ = ["changed", "total"]

    def __init__(self, changed: int, total: int):
        self.changed = changed
        self.total = total

    def update(self, other: "SwitchOutStats"):
        self.changed += other.changed
        self.total += other.total


@register_transform(name='switchout')
class SwitchOutTransform(HammingDistanceSamplingTransform):
    """
    SwitchOut.
    :cite:`DBLP:journals/corr/abs-1808-07512`
    """

    def __init__(self, opts):
        super().__init__(opts)

    @classmethod
    def require_vocab(cls):
        """Override this method to inform it need vocab to start."""
        return True

    @classmethod
    def add_options(cls, parser):
        """Avalilable options relate to this Transform."""
        group = parser.add_argument_group("Transform/SwitchOut")
        group.add("-switchout_temperature", "--switchout_temperature",
                  type=float, default=1.0,
                  help="Sampling temperature for SwitchOut. :math:`\\tau^{-1}`"
                       " in :cite:`DBLP:journals/corr/abs-1808-07512`. "
                       "Smaller value makes data more diverse.")

    def _parse_opts(self):
        self.temperature = self.opts.switchout_temperature

    def _switchout(self, tokens, vocab, stats=None):
        # 1. sample number of tokens to corrupt
        n_chosen = self._sample_distance(tokens, self.temperature)
        # 2. sample positions to corrput
        chosen_indices = self._sample_position(tokens, distance=n_chosen)
        # 3. sample corrupted values
        for i in chosen_indices:
            tokens[i] = self._sample_replace(vocab, reject=tokens[i])
        if stats is not None:
            stats.update(SwitchOutStats(n_chosen, len(tokens)))
        return tokens

    def apply(self, example, is_train=False, stats=None, **kwargs):
        """Apply switchout to both src and tgt side tokens."""
        if is_train:
            example['src'] = self._switchout(
                example['src'], self.vocabs['src'].itos, stats)
            example['tgt'] = self._switchout(
                example['tgt'], self.vocabs['tgt'].itos, stats)
        return example

    def _repr_args(self):
        """Return str represent key arguments for class."""
        return '{}={}'.format('switchout_temperature', self.temperature)


class TokenDropStats(ObservableStats):
    """Runing statistics for counting tokens being switched out."""

    __slots__ = ["dropped", "total"]

    def __init__(self, dropped: int, total: int):
        self.dropped = dropped
        self.total = total

    def update(self, other: "TokenDropStats"):
        self.dropped += other.dropped
        self.total += other.total


@register_transform(name='tokendrop')
class TokenDropTransform(HammingDistanceSamplingTransform):
    """Random drop tokens from sentence."""

    def __init__(self, opts):
        super().__init__(opts)

    @classmethod
    def add_options(cls, parser):
        """Avalilable options relate to this Transform."""
        group = parser.add_argument_group("Transform/Token_Drop")
        group.add("-tokendrop_temperature", "--tokendrop_temperature",
                  type=float, default=1.0,
                  help="Sampling temperature for token deletion.")

    def _parse_opts(self):
        self.temperature = self.opts.tokendrop_temperature

    def _token_drop(self, tokens, stats=None):
        n_items = len(tokens)
        # 1. sample number of tokens to corrupt
        n_chosen = self._sample_distance(tokens, self.temperature)
        # 2. sample positions to corrput
        chosen_indices = self._sample_position(tokens, distance=n_chosen)
        # 3. Drop token on chosen position
        out = [tok for (i, tok) in enumerate(tokens)
               if i not in chosen_indices]
        if stats is not None:
            stats.update(TokenDropStats(n_chosen, n_items))
        return out

    def apply(self, example, is_train=False, stats=None, **kwargs):
        """Apply token drop to both src and tgt side tokens."""
        if is_train:
            example['src'] = self._token_drop(example['src'], stats)
            example['tgt'] = self._token_drop(example['tgt'], stats)
        return example

    def _repr_args(self):
        """Return str represent key arguments for class."""
        return '{}={}'.format('tokendrop_temperature', self.temperature)


class TokenMaskStats(ObservableStats):
    """Runing statistics for counting tokens being switched out."""

    __slots__ = ["masked", "total"]

    def __init__(self, masked: int, total: int):
        self.masked = masked
        self.total = total

    def update(self, other: "TokenMaskStats"):
        self.masked += other.masked
        self.total += other.total


@register_transform(name='tokenmask')
class TokenMaskTransform(HammingDistanceSamplingTransform):
    """Random mask tokens from src sentence."""

    MASK_TOK = DefaultTokens.MASK

    def __init__(self, opts):
        super().__init__(opts)

    @classmethod
    def add_options(cls, parser):
        """Avalilable options relate to this Transform."""
        group = parser.add_argument_group("Transform/Token_Mask")
        group.add('-tokenmask_temperature', '--tokenmask_temperature',
                  type=float, default=1.0,
                  help="Sampling temperature for token masking.")

    def _parse_opts(self):
        self.temperature = self.opts.tokenmask_temperature

    @classmethod
    def get_specials(cls, opts):
        """Get special vocabs added by prefix transform."""
        return ({cls.MASK_TOK}, set())

    def _token_mask(self, tokens, stats=None):
        # 1. sample number of tokens to corrupt
        n_chosen = self._sample_distance(tokens, self.temperature)
        # 2. sample positions to corrput
        chosen_indices = self._sample_position(tokens, distance=n_chosen)
        # 3. mask word on chosen position
        for i in chosen_indices:
            tokens[i] = self.MASK_TOK
        if stats is not None:
            stats.update(TokenDropStats(n_chosen, len(tokens)))
        return tokens

    def apply(self, example, is_train=False, stats=None, **kwargs):
        """Apply word drop to both src and tgt side tokens."""
        if is_train:
            example['src'] = self._token_mask(example['src'], stats)
        return example

    def _repr_args(self):
        """Return str represent key arguments for class."""
        return '{}={}'.format('tokenmask_temperature', self.temperature)